
M A N N I N G

Dean Alan Hume

Fast ASP.NET Websites

Fast ASP.NET
Websites

DEAN ALAN HUME

M A N N I N G
SHELTER ISLAND

 For Emily — ngiyakuthanda

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical proofreader: Adam West

Copyeditor: Laura Cheu
PO Box 261 Proofreader: Elizabeth Martin
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617291258
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13

www.manning.com

contents
preface xi
acknowledgments xii
about this book xiv

PART 1 DEFINING PERFORMANCE1

1 High-speed websites 3
1.1 Why optimize? 4
1.2 The financial impact 4

The business impact 5 ■ The search engine ranking impact 5
The mobile user impact 6 ■ The environmental impact 6

1.3 How to optimize 6
Profile 7 ■ Identify 7 ■ Implement 7 ■ Monitor 8

1.4 Where to optimize 8
1.5 The Performance Golden Rule 9
1.6 Summary 9
v

CONTENTSvi
2 First steps toward a faster website 11
2.1 The basics of HTTP 11

Understanding an HTTP GET request 12 ■ Understanding
an HTTP GET response 13 ■ Understanding HTTP
status codes 15

2.2 Empty cache vs. primed cache 16
2.3 Tips and tools for interpreting performance charts 17

What does it all mean? 17 ■ Google Chrome developer tools 19
Internet Explorer developer tools 21 ■ Firebug 21
Safari Web Inspector 21 ■ HTTPWatch 22 ■ WebPagetest 22
Fiddler 22

2.4 Performance rules to live by 23
Yahoo! YSlow 24 ■ Google PageSpeed 25

2.5 Summary 26

PART 2 GENERAL PERFORMANCE BEST PRACTICES.........27

3 Compression 29
3.1 What is compression? 29
3.2 Why should I use compression? 30
3.3 Pros and cons of compression 32
3.4 Types of compression 32

Gzip 32 ■ Deflate 33 ■ SDCH 33

3.5 Accept-Encoding 33
3.6 The Surf Store application 34
3.7 Adding compression to your website 35

Using IIS to add compression to a website 36
Using a Web.config file to add compression to a website 38
Adding compression with other techniques 40

3.8 The results 40
3.9 Summary 42

4 Caching: The sell-by date 43
4.1 What is HTTP caching? 44
4.2 IIS and HTTP caching 46
4.3 Web.config settings 50

CONTENTS vii
4.4 Caching considerations 50
4.5 Output caching 51

Output caching in an ASP.NET MVC application 51
Output caching in an ASP.NET Web Forms application 54

4.6 The results of HTTP caching 56
4.7 Summary 57

5 Minifying and bundling static files 59
5.1 What is minification? 59
5.2 What is bundling? 63
5.3 New bundling and minifying features in ASP.NET 4.5 63
5.4 Utilizing bundling in ASP.NET MVC 66
5.5 Utilizing bundling in ASP.NET Web Forms 68
5.6 The results 72
5.7 Summary 74

6 HTML optimization tips 75
6.1 Where to position CSS and JavaScript in a web page to

achieve the best performance 76
CSS 76 ■ JavaScript 78

6.2 How the order of styles and scripts affects rendering 79
The impact of duplicate scripts 81

6.3 HTML5 81
6.4 A note on HTML5 browser support 82

HTML5 asynchronous JavaScript 83
HTML5 Web Workers 85 ■ Browser support for HTML5
Web Workers 86 ■ HTML5 Web Workers in an ASP.NET
MVC application 87 ■ Web Workers in an ASP.NET
Web Forms application 89

6.5 HTML5 application cache 91
HTML5 application cache considerations 92
HTML5 application cache in an ASP.NET MVC application 93
HTML5 application cache in an ASP.NET Web
Forms application 96 ■ Application cache support 97

6.6 Summary 98

CONTENTSviii
7 Image optimization 99
7.1 What’s the big deal with image optimization? 100
7.2 Online image optimization tools 100

Smush.it 101 ■ Kraken 101

7.3 Command line image optimization tools 102
Pngcrush 103 ■ Jpegtran 103

7.4 Image Optimizer—a Visual Studio extension 103
7.5 Using data URIs 104

Implementing data URIs in an ASP.NET MVC application 106
Implementing data URIs in an ASP.NET Web
Forms application 109

7.6 The importance of specifying image dimensions 113
7.7 The results 114
7.8 Summary 115

8 ETags 117
8.1 What are ETags? 118
8.2 Why should I change ETags? 120
8.3 Removing ETags in ASP.NET Web Forms and ASP.NET

MVC applications 121
8.4 The results 122
8.5 Summary 123

9 Content Delivery Networks 125
9.1 What is a Content Delivery Network? 126
9.2 CDN options 128
9.3 Domain sharding 128
9.4 Developing with a CDN 130

ASP.NET MVC HTML helper for CDN development 130
ASP.NET Web Forms helper for CDN development 132

9.5 The results 134
9.6 Summary 136

CONTENTS ix
PART 3 ASP.NET-SPECIFIC TECHNIQUES....................137

10 Tweaking ASP.NET MVC performance 139
10.1 Using only the view engines that you need 140
10.2 Release mode vs. Debug mode 141
10.3 The importance of a favicon 143
10.4 Utilizing a code profiler 146

MiniProfiler for database profiling 152

10.5 Summary 154

11 Tweaking ASP.NET Web Forms performance 155
11.1 HTML improvements 156
11.2 Web.config settings 158

Publishing your application in Release mode 158
Disable tracing if it’s not used 159 ■ Disable session state 160
Disable ViewState when it’s not needed 160

11.3 Response.Redirect vs. Server.Transfer 161
11.4 Utilizing a code profiler 162
11.5 Fixing the issue 168
11.6 Summary 169

12 Data caching 171
12.1 Server-side data caching 172
12.2 System.Runtime.Caching 172
12.3 What should I cache? 175
12.4 The sample application 175
12.5 Notes on distributed caching 177
12.6 Summary 178
12.7 Look at how far you’ve come! 178

appendix 181
index 185

preface
Ever since I began building websites, I’ve been interested in learning how to make
them more efficient. It’s a great feeling when you transform a slow website into a
finely tuned engine that makes people say “Wow!” In my pursuit to improve my web-
sites’ performance, I’ve trawled the net and spent long hours trying to find the best
techniques. Technology is constantly developing and improving, and developers are
finding newer and ever more ingenious ways of speeding up their sites.

 If you’re a developer who is new to coding and website performance, the plethora
of resources can be quite overwhelming. Until I wrote Fast ASP.Net Websites, I hadn’t
seen a book that teaches the ASP.NET developer the exact formula, in a step-by-step
process, how to shave seconds off their page load times and drastically improve the
performance of their websites.

 I hope you agree this is that book.
xi

acknowledgments
Until now I never thought about all the research and background work that goes into
writing a technical book. This book would definitely not have been possible without
the help of many people.

 Most importantly, I want to thank my partner Emily for her encouragement and
for sticking with me through all the early mornings and weekends it took to finish this
book. Every time my alarm went off, you never complained, not even once. Thank you
for all your support!

 Sincere thanks to Jennifer Stout at Manning Publications for being the best
development editor…ever. Your cheerful attitude and brilliant work were instru-
mental in the evolution of this book. Thank you for always listening to my ideas
and being so efficient. Thanks to Michael Stephens for believing in me and in
the idea I had for this book. You guided me through each step of the process and
this book wouldn’t have been possible without your advice! Thanks to Candace
Gillhoolley for your help with the marketing of this book and to Rebecca Rinehart
for working with me on my idea for the book cover. Many thanks also to everyone on
the Manning production team for guiding me through the process and bringing the
book to press.

 Special thanks to Sam Saffron for helping me review the MiniProfiler content. Sam
was one of the creators of MiniProfiler and helped me, even though he and his wife
had a new baby on the way, and he was in the process of launching a new website!

 I am also grateful to all the reviewers who helped shape and improve the manuscript
during its development: Bryn Keller, Danylo Kizyma, Ivo Štimac, James Berkenbile,
xii

ACKNOWLEDGMENTS xiii
Jason Hales, Jeff Smith, Mark Sponsler, Michael Roberts, Onofrio Panzarino, and
Wyatt Barnett.

 Special thanks to Robin Osborne and Tim Clarke for their reviewing help, and to
Adam West for his technical proofread of the final manuscript.

 I would like to thank my family for their encouragement throughout the writing
process. You have been fantastic!

 Finally, thank you for purchasing this book. I hope you enjoy reading it as much as
I enjoyed writing it. I hope you will learn valuable techniques you can use and apply to
all your websites.

 Let’s make the web faster!

about this book
This book is designed to allow you, as a developer, to get the best performance out
of your websites. This book delivers details, best practices, caveats, tips, and tricks to
improve the performance of your websites and reduce the load times of your web pages.

How to use this book
Every new chapter in this book is intended to teach the reader a new web perfor-
mance concept. As you follow along with each chapter, and open the accompanying
source code, you will be able to follow the steps provided to improve the performance
of the sample website. Each chapter in the book is also designed to work as a stand-
alone concept; that is, you can chose a chapter and apply just that technique and you
will improve your website. As we progress through the chapters, we will be constantly
improving the sample website and each technique will take the sample website closer
to performance nirvana.

Who should read this book
This book is for web developers who are looking to improve the performance of their
web pages. It is also for developers who are looking to dive a little deeper into web
development and understand the page lifecycle that is happening as a user loads their
website. This book covers fundamental techniques that are applicable to web pages
regardless of the programming language. The techniques that are covered are gener-
ally universal, but aimed toward the ASP.NET website developer.
xiv

ABOUT THIS BOOK xv
Roadmap
Part 1 “Defining performance” teaches you the valuable skills you need to understand in
order to begin improving the performance of your website. It explains the importance of
focusing on the front-end code in order to achieve the biggest and most scalable gains.

 Chapter 1 explains the value and benefits that optimizing your websites will bring.
It also shows you the steps you’ll need to take in order to optimize your websites by
using the Performance Cycle.

 Chapter 2 focuses on the basics of HTTP so you understand the processes that take
place under the hood. The chapter then shows you the essential tips and tools you’ll
need in order to interpret performance charts when you’re profiling your website. You’ll
then look at the different profiling tools that you’ll be using throughout this book.

 Part 2 “General performance best practices” is where the real work begins. You’ll
start to investigate and apply individual techniques to improve the performance of
your web applications.

 Chapter 3 covers compression and why you should use it. After going through the
different types of compression, you’ll look at the Surf Store application used through-
out this book. You’ll then apply compression to the sample application and compare
the difference in page sizes.

 Chapter 4 looks at HTTP caching and shows how you can use it to improve the per-
formance of your web applications. The chapter also shows you how to apply output
caching to your ASP.NET projects.

 Chapter 5 explains the new bundling and minifying features built into ASP.NET
4.5. You’ll then run through examples and apply them to the Surf Store application.

 Chapter 6 dives a little deeper into web performance and offers HTML optimiza-
tion tips and techniques you can apply to your web pages. It also explains the perfor-
mance benefits HTML5 can bring, as well as ways to integrate these HTML5 techniques
into your web pages.

 Chapter 7 discusses the importance of image optimization and how it can signifi-
cantly reduce the weight of your web pages. This chapter looks at the different image
optimization tools available and shows you how to use them. The chapter discusses the
benefits data URIs can bring and walks you through an end-to-end example that dem-
onstrates how you can apply data URIs to an ASP.NET application.

 Chapter 8 discusses ETags and explains their usage on the web today. It explores
whether you should or shouldn’t be using them in your web application and runs
through an example that demonstrates how to remove ETags from your application.

 Chapter 9 focuses on Content Delivery Networks (CDNs) and the benefits they can
bring in terms of speed and performance. It teaches you how to build a simple HTML
helper that you can use in your ASP.NET development when dealing with CDNs. This
technique can help you save money and bandwidth expenses when dealing with CDNs
in a development environment.

 Part 3 “ASP.NET-specific techniques” starts to shift focus slightly and looks at
ASP.NET optimization techniques that are based on server-side code.

ABOUT THIS BOOKxvi
 Chapter 10 teaches you how to tweak your ASP.NET MVC applications to squeeze
precious milliseconds out of your page load time. The chapter shows you how to apply
a profiler called MiniProfiler to your MVC application and use it to pinpoint bottle-
necks in your application.

 Chapter 11 shows simple techniques you can use to improve the performance of
your ASP.NET Web Forms applications, how to apply MiniProfiler to your ASP.NET Web
Forms application, and how to identify any bottlenecks in your code.

 Chapter 12, the final chapter, discusses the importance of server-side data caching.
It teaches you how to apply the features built into the System.Runtime.Caching
namespace and illustrates an end-to-end example, showing data caching in action.
The chapter reviews the progress you’ve made and compares the Surf Store applica-
tion before and after we made improvements. The speed differences between the
applications are astonishing!

Code conventions and downloads
All source code in the book is in a fixed-width font, which sets if off from the sur-
rounding text. In many listings, the code is annotated to point out the key concepts.
We have tried to format the code so that it fits within the available space in the book
by adding line breaks and using indentation carefully. Sometimes, however, very long
lines include line-continuation markers. Code examples appear throughout this book.
Long listings appear under clear listing headers; shorter listings appear between lines
of text or in an illustration.

 Throughout this book, I make use of C#, JavaScript, CSS, and HTML as much as
possible. I am a fan of both ASP.NET Web Forms and ASP.NET MVC, and each chapter
includes sample code for both frameworks. This allows you to choose either frame-
work and still learn and apply the same techniques.

 All of the sample code is available for download on the Github website at https://
github.com/deanhume/FastASPNetWebsites as well as from the publisher’s website at
www.manning.com/FastASP.NETWebsites. Each chapter has its own source code that you
should be able to fire up and begin working on immediately. There is no setup involved.

Software requirements
In order to run the code samples that are provided in this book, you will need a copy
of Visual Studio 2012. You can use either Visual Studio Express 2012, which is a free
download on the Microsoft website, or the full version of Visual Studio 2012. The
source code will only work with versions of Visual Studio 2012 and not previous ver-
sions as there are some newer features in Visual Studio 2012 that have been built to
improve the performance of web pages.

 You will also need a copy of either the Yahoo! YSlow tool or the Google PageSpeed
tool to profile the sample web pages in this book. These two tools are both free and
work with most modern browsers. You will need to check with the vendors to find out
which browsers they are compatible with.

https://github.com/deanhume/FastASPNetWebsites
https://github.com/deanhume/FastASPNetWebsites
www.manning.com/FastASP.NETWebsites

ABOUT THIS BOOK xvii
Author Online
The purchase of Fast ASP.NET Websites includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and other users. To access the forum
and subscribe to it, visit www.manning.com/FastASP.NETWebsites. This page provides
information on how to get on the forum once you are registered, what kind of help is
available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). Let
your voice be heard, and keep the author on his toes!

About the cover illustration
The figure on the cover of Fast ASP.NET Websites is captioned “African Warrior.” The
illustration is taken from a Spanish compendium of regional dress customs first pub-
lished in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal.

Which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers.

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing. The
“African Warrior” is just one of many figures in this colorful collection. Their diversity
speaks vividly of the uniqueness and individuality of costumes from different countries
around the world just 200 years ago.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of life of two centuries ago
brought back to life by the pictures from this collection.

www.manning.com/FastASP.NETWebsites

Part 1

Defining performance

The key to improving the performance of your websites is understanding
how web pages work. These first two chapters teach the skills that you, the devel-
oper, will need to master when improving the performance of your web pages,
and the tools you will use to create performance charts.

 You’ll begin (chapter 1) by learning about the importance of delivering fast
web pages to your users and the impact that slower web pages can have on
modern businesses. In chapter 2, you’ll learn about the performance cycle and
how to use this technique to take a step-by-step approach to improving web
page performance.

 Throughout this book there is a strong emphasis on the front end of a web-
site and in these chapters you learn why it is important to start with the front end
when aiming to improve performance. The Performance Golden Rule states
that developers should “optimize front-end performance first, because that’s where 80%
or more of the end-user response time is spent.” This rule is the basis for the majority of
this book.

High-speed websites
In South Africa, the Zulu have a proverb: “Even a small ant can hurt the mighty ele-
phant.” Many animals are unable to harm the thick skin of the elephant, but just
one ant can crawl into its trunk and cause chaos.

 Have you ever opened a website and experienced a long wait (think slow, plod-
ding elephant), waiting for all of the elements on the page to load? As you are wait-
ing, imagine what an army of small improvements could do to make your website
faster. Within the wider open source community, there are myriad books about web
page performance. But in the .NET community, this remains an evolving area with
much of the knowledge scattered about the internet. In this book, I hope to give
you tools and tricks you can use to improve the speed of your .NET website, one
step at a time.

 Starting with the early versions of ASP.NET, there has always been a focus on
developer productivity. Unfortunately, with this productivity came elements of the
.NET framework that you might not have needed in your application. When you

This chapter covers
■ The impact website speed has on business
■ The performance cycle
■ The Performance Golden Rule
3

4 CHAPTER 1 High-speed websites
used earlier versions of ASP.NET, you got the whole stack, which included drag-and-
drop controls, ViewState, server controls, and clunky HTML. Fortunately, the latest
versions of ASP.NET put the focus on simplicity and getting your web framework to
work just the way you want. In this book, you’ll look at the latest ASP.NET tools
(ASP.NET MVC, ASP.NET Web Forms, and IIS) and use them to adjust and tweak your
website’s code to provide your users with a responsive, high-performance website that
runs smoothly. Internet Information Services (IIS) is an integral part of the Windows
Server family of products and is one of the most popular servers for hosting websites.
You’ll be using it to fine tune websites and optimize the way the server returns data to
a browser. You’ll also look at a sample e-commerce website in both ASP.NET Web
Forms and ASP.NET MVC and take it from slow to extremely high speed. You’ll create a
sample application called Surf Store, which you’ll build and improve upon in each
chapter. This gradual progression will also help you gain the understanding that you
need to create fast ASP.NET websites.

 In this first chapter, we’ll take a general look at the importance of website speed
and the negative impact a slow website can have. In particular, we’ll focus on the Per-
formance Golden Rule and how it can make a compelling case for optimization.

1.1 Why optimize?
Steve Souders, the head performance engineer at Google, coined the term the Perfor-
mance Golden Rule in his book High Performance Web Sites (O’Reilly Media, 2007). In it
he states that developers should “optimize front-end performance first, because that’s
where 80% or more of the end-user response time is spent.”

 When you first picked up this book and browsed through the table of contents, you
may have noticed that a lot of emphasis is placed on front-end techniques (HTML,
images, and static files) and not specifically on server-side code optimizations. When I
began looking into website performance, I was shocked to discover that the biggest
gains I could make were on the front end.

 The key to faster websites is to place your focus on improving front-end perfor-
mance. It has been proven to work and has allowed developers around the world to
boost their websites’ performance time and time again. According to the Yahoo! YDN
blog, more than 50 teams at Yahoo! have reduced their end-user response times by at
least 25%. This is a sizeable increase.

 Throughout this book, we’ll refer to the Performance Golden Rule, because it is
the basis for improving website performance. In the following chapters, you’ll learn
more about the Performance Golden Rule and why it’s important. Beyond improv-
ing performance, fine tuning the front end of a website has proven benefits in other
areas as well.

1.2 The financial impact
Let’s start with the money aspect of web page optimization. Depending on your web-
site hosting solution, you may be paying for the bandwidth associated with your site.

5The financial impact
Every file downloaded when a user loads your web pages means more bandwidth
used. By reducing the amount of bandwidth and number of requests served from your
website, you essentially save yourself or your company money.

1.2.1 The business impact

The financial penalty of slow bandwidth is the tip of the iceberg; the business impact
of a slow web page can be drastic. Users are becoming more and more accustomed to
speedy web pages. Because connection speeds are faster and hardware is better than
ever, users expect a certain level of perceived speed when they access a web page.
When they don’t perceive that speed, they look elsewhere, meaning that you might
lose their business.

 As more and more people all over the world shop online, they associate the speed
of a website with the trust they have for it. If your site is extremely slow, it won’t instill
confidence. Again, no confidence, lost business.

 In a consumer survey conducted by Gomez,1 nearly one-third (32%) of consumers
reported that they abandon slow sites that have between a 1 to 5 second delay.

 As a developer, you may not believe that site speed plays such an important role in
the way your organization and website are perceived by your users. But in order to test
how users respond to different web page timings, Google purposely injected latency
into its web pages and found that slowing down the search results page by 100 to 400
milliseconds had a measurable impact: the number of searches per user declined by
0.2% to 0.6%.

 Similarly, when the Google Maps home page was reduced in size from 100 KB to
70-80 KB, traffic went up 10% in the first week and an additional 25% in the following
three weeks (Farber 2006).2 Other major online players found similar results when
they optimized their websites.

1.2.2 The search engine ranking impact

Google’s search engine team places emphasis on the speed of a website and how it
affects search rankings. Google now includes site speed, an attribute that reflects how
quickly a website responds to web requests. Google strongly encourages web develop-
ers to begin looking at their site speed and ways in which they can improve it. If you
have invested heavily in search engine optimization (SEO), you might find it disheart-
ening if all of your hard work is negatively affected by a slow website that slips down
the search rankings.

1 “Why Web Performance Matters: Is Your Site Driving Customers Away?” Gomez, the web performance division
of Compuware, whitepaper, copyright 2010, http://mng.bz/tOq5.

2 “The Psychology of Web Performance,” WebSiteOptimization.com, May 30, 2008, http://www.websiteoptimi-
zation.com/speed/tweak/psychology-web-performance/.

http://mng.bz/tOq5
http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/

6 CHAPTER 1 High-speed websites
1.2.3 The mobile user impact

Mobile internet usage is increasing dramatically as many mobile users turn to their
phones, tablets, and other mobile devices to browse internet sites and get the information
they need while on the go. Most mobile providers use 3G technology, which can be prone
to wildly varying speeds depending on many factors. 4G is starting to gain traction, yet as
developers, we still need to consider slower connections. Even though mobile networks
are becoming faster, every millisecond counts! All techniques you’ll learn in this book will
ensure that mobile users also benefit. Users who browse your website via a mobile device
may be paying for their internet usage, so every download you save them when they open
up a web page will also go into their back pockets—it’s a win-win situation.

1.2.4 The environmental impact
Your organization may be considering its green credentials. You’ll be surprised to
know that any changes you make that improve the performance of your website will
also improve your organization’s carbon footprint. Web servers require electricity and
consume power in order to service the many requests that users make to a website.
Imagine if you could cut down on the number of web requests made to your servers.
That would mean less traffic for the server, which would mean the server wouldn’t
have to work as hard to process requests. Some companies may also be running multi-
ple servers to load balance a website. If you cut down on the server load, you might
not even need that extra server!

1.3 How to optimize
It may seem like an overwhelming task, but the overall process of improving your
website’s load times and performance can be broken down into four key stages. The
performance cycle shown in figure 1.1 is a summary of the entire journey of the

Figure 1.1 The performance cycle

7How to optimize
website-improvement process. Its four stages act as a guide that can be applied to any
website, regardless of the specific rules and techniques you apply, helping you realize
performance potential and faster load times.

 A website rarely stays the same for long—it evolves and grows as business expands.
These four stages are useful to refer to if you get stuck or are unsure of the next step
in the cycle.

1 Profile your website, analyzing it so you can understand where the performance
issues are and why they are there.

2 Identify appropriate techniques, learning what best suits your situation and how
you can enhance your website’s speed.

3 Implement changes, having determined which techniques best suit your website.
4 Monitor your site, tracking for any signs of decreased speed.

1.3.1 Profile

In chapter 2, we’ll run through some free tools you can use to effectively profile your
website. These tools do the hard work for you by producing charts and results that
clearly show where your website can be improved. They pick up obvious and some-
times not-so-obvious areas for improvement. With the results from the profiling tools,
learning to read the signs will become a lot easier. Problem solving involves more than
simply reproducing behavior—it involves insight.

 Before you begin applying the changes, take a snapshot of the website’s performance
profile to help you see how the improvements you make affect your website. In chapter 2,
we’ll discuss ways in which you can use performance and waterfall charts to create snap-
shots of your site as it currently stands; the snapshot can also be used as a benchmark
along the way. The satisfaction that you gain from comparing the optimized results to
the original results can be very rewarding. Not to mention that these results can be used
to impress your boss! You may need to justify spending your time on improving website
performance, and what better way to do so than by showing proven results?

1.3.2 Identify

With the results from profiling, you can identify areas that need improvement. With
more and more practice, you’ll become better at reading the charts and recognizing
areas that require attention. You may find that all the techniques that we run through
in this book are applicable to your situation, but the results of your analysis might
reveal that you need to apply only a few.

1.3.3 Implement

The next step of the improvement process involves implementing the changes to your
website. Chapters 3-12 will guide you through this step by step, with each chapter tak-
ing a sample website that has a poor performance rating and showing you how to opti-
mize and improve its speed. By the end of the book, you’ll have taken this slow sample
site and made it a high-caliber website.

8 CHAPTER 1 High-speed websites
1.3.4 Monitor

The final step in the improvement process is monitoring your website. Once you have
made the changes, your site should be stable and remain optimized. But as your site
grows, you may find yourself adding new functionality and features. This inevitably leads
to more page components, which could cause degradation in page speed. Only by mon-
itoring your site will you be able to maintain this optimized level of performance.

 The four-step cycle begins again as a new cycle.

1.4 Where to optimize
To improve your website’s performance, you must understand where your users spend
most of their time waiting for resources to be downloaded. A basic page request is
shown in figure 1.2.

 In the figure, notice how the content download and the browser parsing the HTML
are the last, but most important, parts of the request. The browser parsing the HTML is
important because it needs to download enough resources to render the page. To
help you visualize how the content download is split, figure 1.3 summarizes the aver-
age bytes per page, based on an evaluation of over 250,000 URLs.

Figure 1.2 A basic page request

Figure 1.3 Average bytes
per page by content type
(source: httparchive.org).
The 250,000 URLs that
produce this chart are made
up by a large percentage of
www.alexa.com’s top
websites, as well as
additional user-submitted
websites.

www.alexa.com
www.httparchive.org

9Summary
As you can see in figure 1.3, you can see that the HTML document is a very small per-
centage of the overall download. Surprisingly, users spend most of their time waiting
for the other components to download!

 As a back-end developer, you probably think the first place to optimize your web-
site is deep in the server-side code. This may include optimizing code or indexing
the database. Instead, you need to start thinking about scalability and how quickly a
website responds on its first load and even its second, third, and so on. Web page
speed has less to do with server-side code and more to do with the components that
make up the page. The HTML document is a small percentage of the total response
time, and the components are the bulk of the page load. If you look at these compo-
nents and find ways to improve the download time, these are the areas in which you
can make the biggest gains.

1.5 The Performance Golden Rule
Going back to the Performance Golden Rule, as developers, we have to keep in mind
what Steve Souders wrote (in High Performance Web Sites): we should “optimize front-
end performance first, because that’s where 80% or more of the end-user response
time is spent.” Using this rule, you can deduce that if 80% of the download time is
spent on the front end, and you cut that in half, you reduce response times by 40%. If
you cut the back-end performance in half, you gain only a 10% increase in response
times. It almost seems like a no-brainer!

 From a business point of view, the resources and skills required to optimize back-
end code might require a skilled developer, cost more money, and take longer. Chang-
ing back-end code may require rearchitecture of that code, expensive profiling tools,
and micro-optimizations. The techniques we cover beginning in chapter 3 are proven
to work and can be applied across all web pages on a website with great results.

 In figure 1.3, you saw that HTML makes up a very small proportion of the compo-
nents in a web page. If you refer to the Performance Golden Rule and think again
that 80% of user time is spent on page downloads, it becomes obvious where you need
to look first! Imagine spending all your time micro-optimizing the server-side code
and only making very small gains in speed, whereas you see a huge payoff immediately
if you concentrate your efforts on the front end.

 That said, although front-end optimization will give you the biggest gains and
speed up your website significantly, you might still have room for improvement on the
back end of your website. In chapters 10-12 we’ll look into ways to help you squeeze
those last precious milliseconds out of your website by optimizing the back-end code.

1.6 Summary
As a web developer, you hold tremendous power and responsibility in your hands.
Instead of providing your users with an average website, you have the ability to give
them that something extra. In this chapter, you’ve seen that you can make a major dif-
ference to your users’ experience with simple and basic changes.

10 CHAPTER 1 High-speed websites
 In the open source community, there is a growing buzz and excitement around
web page performance. The advantages of serving a fast, responsive web page include
reduced data traffic costs, increased business revenue, more website conversions,
improved reputation, and more time for your users to spend on your site. In addition,
optimizing your site’s performance can be extremely fun!

 In the next chapter, you’ll begin learning about the basics of HTTP as well as essen-
tial tips and tools for interpreting performance charts. Chapter 2 will give you a solid
introduction to web page performance.

First steps toward
a faster website
This chapter runs through the basic tools and skills that you need to know in order
to start analyzing your site. You’re going to start by learning the basics of HTTP and
understanding HTTP requests and responses. You’ll also run through performance
charts and the tools you can use to create them. By the time you’re finished with
this chapter, you’ll be able to dive straight into coding.

2.1 The basics of HTTP
HTTP, the foundation of all communication on the web, allows browsers and serv-
ers to communicate with each other using a request-and-response communication
system. HTTP, in the most simple terms, is like a conversation: one person is the

This chapter covers
■ The basics of HTTP
■ Empty cache versus primed cache
■ Tips and tools for interpreting

performance charts
■ What does it all mean?
■ Performance rules to live by
11

12 CHAPTER 2 First steps toward a faster website
browser requesting information, and the other is the server, responding with a result.
You (the browser) then interpret the response and act accordingly.

 In general, the client always initiates the conversation and the server replies. These
HTTP requests and responses contain data that is readable to the human eye, which
makes it easy to follow and understand. Most modern browsers come with a set of free
tools that enable you to monitor these messages easily.

HTTP messages are made up of a header and a body. The HTTP header contains
important data about the client browser, the requested page, and more. It’s transmit-
ted in a key/value pair format and is the core part of an HTTP message. Then, in the
most basic type of HTTP request, the HTTP message body will contain data being sent
to the server. In a request, this is where user-entered data or uploaded files are sent to
the server.

 Each HTTP request also contains an HTTP verb that tells the server what to do with
the data being sent across. You may be familiar with the two most common verbs—
GET and POST. They often appear in the HTML action form attributes.

GET is used to request a resource without expecting to change that resource (for
example, loading a website’s homepage). POST is used to submit data to the resource,
which is then updated (for example, submitting your details when changing your user
preferences on a website).

2.1.1 Understanding an HTTP GET request

The most common type of HTTP request is GET. Every time you type a URL in your
browser and hit return, the action fires off a GET request. Figure 2.1 shows a typical
GET request. I have used one of the built-in browser tools that we’re going to cover
later in this chapter to view its internal contents.

 The information inside an HTTP request is full of useful details; it’s up to you to
understand exactly what is happening.

Figure 2.1 An HTTP GET request

13The basics of HTTP
In figure 2.1, you’ll notice a typical HTTP request to www.mozilla.org.

■ The Request Method is listed as a GET, and the Status Code is 200, which means
it was successful.

■ The Accept header field tells the server which content types are acceptable. In
this case, the browser is accepting HTML. The browser also tells the server it
supports other content types in case the server doesn’t support the first one it
asks for. The string containing multiple content types is chained together for
efficiency, meaning that the browser doesn’t have to request multiple content
types one at a time if the first request fails. The Accept-Charset tells the server
which character encoding is acceptable (such as ASCII, UTF-8, etc.) For this
request, it is ISO-8859-1, UTF-8.

■ In the field Accept-Encoding, the browser is letting the server know that it sup-
ports Gzip, Deflate, and SDCH compression types. If the data the server sends
back is compressed, it will understand how to decompress it and display it to the
user. We’ll cover compression in chapter 3.

■ The browser uses the Accept-Language field to tell the server which languages
it can use to respond. In this case it can respond in en-GB and en-US.

■ The Connection field tells the server what type of connection the user-agent would
prefer. In this request, the browser has asked for a keep-alive connection type.

■ The User-Agent field is a text string that browsers and devices use to identify
themselves for tracking and other purposes.

2.1.2 Understanding an HTTP GET response

After you’ve made the HTTP request to www.mozilla.org as shown in figure 2.1, the
server replies with an HTTP response.

 From the request shown in figure 2.2, you can see the following:

■ The server tells the browser that this component can be cached. In this case it’s
using the Cache-Control field and notifying the browser that it can be cached
for 600 seconds. All Cache-Control timings are measured in seconds.

Figure 2.2 An HTTP GET response

www.mozilla.org
www.mozilla.org

14 CHAPTER 2 First steps toward a faster website
■ The Connection field shows Keep-Alive is supported.
■ The Keep-Alive field tells the browser which connection limits it supports (time-

outs and max connection time).
■ The Content-Encoding field tells the browser that the server is sending data

back that’s encoded with Gzip. Now the browser can decompress that data with
the appropriate coding. You’ll look at compression more closely in chapter 3.

■ The component’s Content-Type is text/html.
■ The Date field tells the browser the date it was processed so it can cache it

if necessary.
■ The Expires field tells the browser how long it’s allowed to keep the compo-

nent. The Expires field is a date and time in the future. If it’s far enough into
the future, the browser may choose to cache the component. This is a good
thing, because it saves the browser from having to request that component
again from the server for a specified period of time. This speeds up the down-
load because there is one less request to make. You’ll look into Expires headers
and how to apply them in chapter 4.

■ Transfer-Encoding is the type of encoding used to send data back to the
browser. In this case it was chunked, which means that the data was sent over by
the server in a series of chunks instead of all at once.

■ The Vary field instructs the proxies to cache two versions of the resource: one
compressed and one uncompressed. Without Vary, a server may mistakenly
send users the incorrect cached version of an HTML page instead of the correct
one for its encoding type.

In chapter 1, you learned that multiple components are downloaded when you
request a single URL. These HTTP requests and responses are made for each compo-
nent in the HTML document and they all have similar fields in the headers. If you
refer to the request for www.mozilla.org, you can see that multiple requests are made
when you enter the URL. When you request the URL, the HTML document is down-
loaded, and as the browser parses its contents, it starts to download the additional
components it finds inside the HTML.

 From the chart in figure 2.3, you can see the multiple GET requests downloaded
when you accessed www.mozilla.org. As the browser parsed and located additional
components inside the HTML document, it started to download them. Each compo-
nent is one round-trip that the browser has to make to the server, meaning sending a
request and waiting for a response takes time. As a developer, you can find ways to
reduce the number of server requests that the browser makes. You can also influence
how the browser behaves by telling it to cache the information it downloads. This is
what web performance is all about—reducing the number of HTTP requests sent to
the server.

www.mozilla.org
www.mozilla.org

15The basics of HTTP
2.1.3 Understanding HTTP status codes

When a request is made to your server for a component on your website, the server
returns an HTTP status code, as shown in table 2.1. The status code tells the browser if
it retrieved the component and it tells the browser how to react. Status codes can be
quite handy when you’re debugging an application.

For a full list of status codes, visit http://en.wikipedia.org/wiki/List_of_HTTP_
status_codes.

Table 2.1 An HTTP status code list

HTTP status code range Description

100–1xx Informational: Request received, continuing process.

200–2xx Success: The action requested by the client was received, understood,
accepted, and processed successfully.

300–3xx Redirection: The client must take additional action to complete the request.

400–4xx Client Error: This status code is intended for cases in which the client
seems to have made an error.

500–5xx Server Error: The server failed to fulfill a valid request.

Figure 2.3 Multiple requests to www.mozilla.org

www.mozilla.org
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

16 CHAPTER 2 First steps toward a faster website
2.2 Empty cache vs. primed cache
A web browser stores certain downloaded items for future use in a browser cache folder.
Images, JavaScript, CSS, and even entire web pages are examples of cache items. Before
you start looking at tools that allow you to profile a website, it’s important to understand
the differences between an empty cache and a primed cache. The first time you visit a
website, you won’t have a cache of that site. But as you continue to browse the website, the
browser cleverly stores the components you download in this temporary folder cache.
The next time you visit the same website, you’ll have a primed cache that contains the
website’s cached items. The browser does this so that on subsequent visits to the same
website, it can easily retrieve the components, which speeds up your download time.

 The empty cache shown in figure 2.4 represents the first time a user visits a site.
Compare that to the primed cache for the same website. You can see the difference in
both the number of HTTP requests and the total weight of the web pages. The total
weight of the web page on the left is 130K; the total weight for the primed cache on
the right is 39.8K. All the components that were saved from the first visit were
retrieved from the cache, thus cutting the download time and weight drastically.

 An important question to ask yourself when analyzing your website is “How many
of my users are first-time visitors (who will have an empty cache) and how many are
repeat visitors (who will have a primed cache)?” When you answer this question, based
on statistics gathered while using a website analytics package, you’ll understand where
to focus while you’re optimizing your website’s performance.

 If you don’t use a website analytics package or you don’t have enough data to
determine visitor trends, it can be helpful to think about the domain of your website.
Is it an intranet website that might expect a lot of repeat visits throughout the day? Is it
a site expecting to attract a lot of new visits? This mindset allows you to put yourself in
the shoes of the user so you can improve and enhance their site experience.

 It’s also important to note that both the primed and empty caches of a browser
need to be taken into account when profiling, implementing, and monitoring a web

Figure 2.4 The difference between an empty cache and a primed cache. Notice the
differences in the total weight and the number of HTTP requests.

17Tips and tools for interpreting performance charts
page. Sometimes you may find yourself refreshing a web page and getting skewed
results because the browser is actually retrieving the components from its cache
instead of fetching a fresh version on an empty cache. Most browsers will allow you to
refresh a page by hitting the F5 key, which might load the page from cache. But Ctrl-F5
forces a cache refresh, and will guarantee that you’ll get the newest content. You may
also find that some browsers allow you to force a cache refresh by holding Shift (or
Ctrl) and clicking the refresh icon. Keep this in mind when you’re profiling your site
because you might be profiling a web page that’s been updated on the server but isn’t
reflected in your browser because of caching.

2.3 Tips and tools for interpreting performance charts
Now that we’ve talked about what’s going on under the hood when you make a
browser request, we can start interpreting performance charts.

 To understand how to improve your website’s performance, it’s vital that you learn
how to read performance charts. The most typical charts you’ll come across with
today’s profiling tools are waterfall charts, diagrams that show downloads in a linear
progression, in a manner that looks like a waterfall.

 Most modern browsers come with their own built-in developer tools and a version
of a waterfall chart that can be easily accessed via the Tools menu. Most browsers also
have a hotkey for developer tools and F12 seems to bring up the developer panel. You
may need to check your browser settings first, as different browsers might organize
their tools differently. In the next section, you’ll go through a brief review of well-
known developer tools you can use to produce performance charts; after that, you’ll
learn how to interpret the data from these charts in greater depth.

2.3.1 What does it all mean?

When you look at the waterfall chart in figure 2.5, you can see that it gives you so
much more than a series of simple requests.

 In a waterfall chart, the length of the bars shows how long a certain resource took
to download. In figure 2.5 one bar is extremely long, highlighting an area to investi-
gate. Is the image file size too large? Is the image the correct format? What is causing
this image to download so slowly?

 The green vertical line (at 1.2) running through all the requests indicates the DOM-
ContentLoaded event. The DOMContentLoaded event is triggered when the page’s Doc-
ument Object Model (DOM) is ready, which means that the API for interacting with
the content, style, and structure of a page is ready to receive requests from your code.

 The blue vertical line (near 3.2) indicates the Load event being fired. The Load
event is triggered when the entire page has loaded and is generally the moment when
the loading icon in your browser’s title bar stops spinning. When this has happened,
all JavaScript and Cascading Style Sheets (CSS) have finished loading and have been
executed, and all images have been downloaded and displayed. The Load event lines
help you see how long it takes for pages to load and helps you understand when the

18 CHAPTER 2 First steps toward a faster website
browser is parsing and loading your website’s components. So a green line indicates
that the DOMContentLoaded event is triggered and the browser is ready to interact
with requests from your code, and a blue line indicates that the Load event has been
triggered and all JavaScript and CSS have finished executing. Different developer
tools may provide a different color for each vertical line, but they generally mean
the same thing.

 If you refer to the line in figure 2.5 that was taking a long time to load, you can see
that it’s pushing the Load event out. There’s a gap of whitespace between item 15
being finished loading and item 16 starting. It’s as if the image were blocking progress
and causing a slight delay, so this is definitely an area to investigate further.

 The waterfall chart also shows three JavaScript files being downloaded every time
you access the page. Are all three files necessary? Could you reduce these to one
request? As you start optimizing your website and looking at ways to improve its per-
formance, you’ll need to keep asking yourself these sorts of questions.

 Depending on your organization, your website may be image- or style-intensive. Fig-
ure 2.6 is the waterfall chart for a popular online clothing store in the UK. You’ll see a
large number of HTTP requests being made, so many that I had to crop the image.

 Due to the nature of the business, high-quality images of the clothes are necessary,
but this can have a very negative effect on web page performance. In chapter 7, you’ll
learn image optimization techniques that reduce the overall size of image files without
reducing their quality.

 Another area that could be addressed immediately is the number of JavaScript files
on the page. Combining them into one file could drastically reduce HTTP requests. In
chapter 5, you’ll look at minifying and bundling static files, which will reduce the
number of HTTP requests and the size of the requests that a browser needs to make.

Figure 2.5 Waterfall chart for www.deanhume.com

www.deanhume.com

19Tips and tools for interpreting performance charts
At first glance, you may notice obvious ways to make performance improvements, but
the solution may not be glaringly obvious. If you keep the two main principles (reduc-
ing the number of requests and the size of the requests) in mind when profiling your
site, finding the solution will be a lot easier.

 Each profiling tool will produce waterfall charts with slightly different features. It’s
up to you to decide which tool and browser you prefer. As you become familiar with
your chosen tool, you’ll find it easier to read and spot areas for improvement.

2.3.2 Google Chrome developer tools

In figure 2.7, I use Chrome developer tools to show you how to produce a waterfall
chart. To access Chrome’s developer tools, navigate to the Settings menu and bring
up the developer tools in the Tools menu; you could also hit F12.

 If you bring up the Network panel and navigate to my website (www.deanhume.com),
you can see the components being downloaded as you reach the home page as shown
in figure 2.8. The developer tools also show you the waterfall chart and the order in
which the components were downloaded.

 The waterfall chart also takes latency into account. Latency is the amount of time it
takes to open a connection to the server and is associated with the round-trip time
that it takes for a request to reach the server and return to the user. The amount of
latency depends largely on how far away the user is from the server. It’s shown in the
lighter shade within each bar.

 The chart is color coded, with each hue representing a content type, such as
JavaScript files, CSS, or images. This helps you see and visually group the different
content types.

Figure 2.6 Waterfall chart for Asos.com

www.deanhume.com

20 CHAPTER 2 First steps toward a faster website
The Chrome developer tools also allow you to edit HTML and CSS on the fly, which is
a handy way to develop quickly and make small changes without having to reload the
page. Next, you’ll run through a few other browser developer tools and show the dif-
ferences between waterfall charts and other profiling tools.

Figure 2.7 Accessing Chrome developer tools

Figure 2.8 Waterfall chart for www.deanhume.com using Chrome developer tools. The figure also
shows the latency that can sometimes be associated with the download time of a component.

www.deanhume.com

21Tips and tools for interpreting performance charts
NOTE Remember that certain components on a web page may be cached, which
can affect your waterfall chart’s accuracy. Run the tool and produce charts for
both primed and empty caches in order to get a more complete picture.

2.3.3 Internet Explorer developer tools

The developer tools in Internet Explorer have been around since IE 6 and have
evolved with each new version. In IE 9, the tools allow you to debug JavaScript, HTML,
and CSS as well as profile the performance of a web page using the handy profiling
reports. They can be easily accessed by hitting the F12 key, as seen in figure 2.9.

2.3.4 Firebug

Firebug is a free and open source tool that was originally built as an extension for Fire-
fox. It has been around since 2006 and is a solid and proven tool. Firebug was one of
the first developer tools to produce a waterfall chart, and most other developer tools
have produced similar waterfall charts based on this original style. Much like
Chrome’s developer tools, it allows you to edit HTML and CSS on the fly.

 Using the Net tab allows you to easily view a waterfall chart, and by expanding on
the individual nodes, you can view the HTTP requests and responses. Although Fire-
bug was originally intended for Firefox, it’s also available as a plugin for Chrome. For
more information, visit getfirebug.com.

2.3.5 Safari Web Inspector

If you develop for Mac users or just prefer to use Safari, it also has a free tool, called
Web Inspector, which allows you to inspect network traffic. You may also notice that
the layout and design are very similar to the Chrome developer tools. Safari and
Chrome are powered by WebKit.

Figure 2.9 Waterfall chart for www.deanhume.com using IE developer tools

www.deanhume.com

22 CHAPTER 2 First steps toward a faster website
2.3.6 HTTPWatch

HTTPWatch is an integrated HTTP sniffer for IE and Firefox that allows you to watch
and “sniff” the HTTP traffic coming to and from your website. It provides a great set of
tools that allow you to easily profile your site’s performance, as well. It doesn’t come
built into any browsers, but a free basic version and an advanced version with more
features can be purchased and downloaded from www.httpwatch.com.

2.3.7 WebPagetest

You can find an extremely handy tool to profile your site at www.webpagetest.org. It
isn’t built into any browser, but it can provide a wealth of information about any web-
site (figure 2.10). Simply visit the site and enter the URL you wish to profile.

 WebPagetest is an open source project that’s developed and supported primarily
by Google. Many partners also work with WebPagetest and provide a test location for
you to run your site against. I really like the way you can profile your site against a loca-
tion from almost anywhere in the world, using multiple browsers. It’s especially handy
if you need to see what your users would see if they accessed your site from halfway
across the world. These test locations provide useful insight into the round-trips the
browser will make to download the required components. There is even an option to
record video of the page as it loads, which can be very useful to compare and review
page rendering.

 WebPagetest provides a breakdown of the first view and the repeat view, allowing
you to see how many requests you saved by using caching, Expires headers, and so on.
You can also experiment with different advanced features if your website has a com-
plex setup. Throughout this book, I will refer to www.webpagetest.org because it pro-
vides a great set of charts that give us an in-depth look at a website’s performance.

2.3.8 Fiddler

Another fantastic free tool is Fiddler. This web debugging proxy logs all network
traffic between your computer and the internet and lets you inspect traffic, set

Figure 2.10 Waterfall chart for www.deanhume.com using www.webpagetest.org

www.httpwatch.com
www.webpagetest.org
www.webpagetest.org
www.deanhume.com
www.webpagetest.org

23Performance rules to live by
breakpoints, and “fiddle” with incoming or outgoing data. It can be quite interesting
to fire up Fiddler and watch the requests coming and going from your PC, let alone
the website that you are profiling!

 The Fiddler dashboard gives you an in-depth look at the HTTP requests and allows
you to create and test HTTP requests yourself. Fiddler also offers a whole host of other
great features. For more information, point your browser at www.fiddler2.com/fiddler2.

2.4 Performance rules to live by
In 2007, Steve Souders, at the time Chief Performance Yahoo! at Yahoo!, created a set
of 14 rules for faster front-end performance. These rules, shown in table 2.2, are out-
lined in his book, High Performance Web Sites, and every single one is widely accepted as
best practice in web performance today.

As the web has evolved, the number of rules has increased, but every core concept in
this book is based on Souders’s 14 rules. There may be newer browsers that can han-
dle HTML5, but these original rules have been proven and tested, and they underpin
everything that you are trying to achieve.

 Many of these rules closely align with this book’s table of contents. As you prog-
ress through the chapters, you’ll learn about the performance rules, as well as some

Table 2.2 Steve Souders’s rules for faster front-end performance

Rule Number Description

 1 Make fewer HTTP requests

 2 Use a content delivery network

 3 Add an Expires header

 4 Compress components with Gzip

 5 Put CSS at the top

 6 Move JavaScript to the bottom

 7 Avoid CSS expressions

 8 Make JavaScript and CSS external

 9 Reduce DNS lookups

10 Minify JavaScript

11 Avoid redirects

12 Remove duplicate scripts

13 Turn off ETags

14 Make AJAX cacheable and small

www.fiddler2.com/fiddler2

24 CHAPTER 2 First steps toward a faster website
of the newer concepts that have evolved with the introduction of HTML5 and
advances in JavaScript.

 There are a lot of performance techniques and methods that can be applied to
your website and trying to remember them all when you’re profiling your site can be
quite daunting. This is where a performance-profiling tool can be very helpful.
Instead of remembering each and every technique, these tools take the hard work out
of profiling and provide a set of suggestions and best practices that can be applied to
your website. Let’s look at two such performance-analysis tools, Yahoo! YSlow and
Google PageSpeed.

2.4.1 Yahoo! YSlow

YSlow is a great add-on for many browsers and it offers suggestions for improving a
web page’s performance. It’s free and can be downloaded from http://developer
.yahoo.com/yslow/ for Firefox, Chrome, Opera, and Safari. The tool runs against a
set of 23 rules that affect web page performance. Throughout the remainder of this
book, you’ll come back to this tool to see how each improvement you make boosts
your performance score.

YSlow provides a grade and overall performance score for your URL. It grades A as
high performance and F as poor. You should, obviously, always aim for the highest
grade you can obtain because each step closer to an A improves your web page perfor-
mance. Figure 2.11 shows performance areas on my website that need to be improved.

 In figure 2.11 you’ll notice that the overall performance score for my website is
quite high, but one area scored an E. Obviously I need to add an Expires header to

Figure 2.11 Yahoo! YSlow tool run against www.deanhume.com

www.deanhume.com
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/

25Performance rules to live by
certain components on the web page. As you recall from examples earlier in the chap-
ter, these Expires headers let the browser know that the component doesn’t need to
be downloaded again because the content hasn’t changed. It will only expire in the
future—this saves the browser a round-trip to the server again, thus speeding up the
load time. You’ll look at code and the different ways in which you can add Expires
headers to the components in your web page in chapter 4.

2.4.2 Google PageSpeed

Google also has a handy performance tool called PageSpeed, shown in figure 2.12,
which can be added to both Firefox and Chrome. It’s very similar to YSlow and was
built using the same performance rules set out by the Yahoo! performance team.
PageSpeed has grown to become a great tool that allows you to easily profile your site.
If you would like to try the tool before adding it to your browser, Google offers you the
ability to do so on the PageSpeed Insights web page (https://developers.google.com/
speed/pagespeed/insights).

 In figure 2.12, you can see the results of a test run against my site. Much like YSlow,
it has given me a similar suggestion, letting me know that I need to use browser cach-
ing by setting an expiration date on some resources. The PageSpeed tool provides a
very simple interface that suggests only the improvements you need to make. Unlike
YSlow, it doesn’t give you a breakdown of the components or the empty versus primed
cache view. I find it very helpful to have the full dashboard that YSlow provides, but I
also like to incorporate the performance results from Google PageSpeed into my
overall performance profiling. Each tool provides its own rule set and logic to deter-
mine the score.

Figure 2.12 Google PageSpeed tool run against www.deanhume.com

www.deanhume.com
https://developers.google.com/speed/pagespeed/insights
https://developers.google.com/speed/pagespeed/insights

26 CHAPTER 2 First steps toward a faster website
NOTE Some of the performance profiling tools may offer a setting that
enables you to autorun the tests every time a web page is loaded. Although
this may be helpful during testing and development, remember that it needs
to process a full set of rules and code, which may take time. It may feel as if a
web page is running slowly, but actually it’s the profiling tool running in the
background. Don’t forget to turn it off when you aren’t using it!

2.5 Summary
In this chapter, you started off learning the basics of HTTP and understanding how the
browser makes a request to the server and gets a response. Next, you had a brief sum-
mary of the tools that are freely available with most browsers. These developer tools will
help you start profiling and analyzing HTTP requests and responses from your websites.
The waterfall chart is the most widely used when it comes to profiling your site and it
displays the component downloads over a timeline. You evaluated two different web
pages with a waterfall chart and saw how you could reduce the overall number of HTTP
requests. You also became familiar with two tools that help you measure your applica-
tions’ performance, as well as suggest areas for improvement. You’ll use these tools
throughout the book as you work to improve the sample application’s speed.

 Now that you have a good grasp of the basics of web performance, it’s time to start
improving your website. In the next chapter you’ll learn how to apply compression to
your website and make significant speed gains.

Part 2

General performance
best practices

Part 1 helped you understand the inner workings of web pages and the life-
cycle of a web page request. This knowledge is vital to effectively improve the
performance of your web pages and it will help guide you through part 2. You
are about to start applying performance techniques that will improve and
enhance the speed of your web pages.

 In these seven chapters you will become familiar with the sample application
used throughout this book. As you progress and apply the performance-enhancing
techniques to the Surf Store application, you will notice a decrease in its page load
times, and a reduction in the overall page weight of each page. Each technique is a
building block that will make your pages lighter and load times quicker.

IIS plays a big role in this part of the book, and you begin by looking at com-
pression and the benefits that it brings to web page performance. HTTP caching
is another important best practice that you can use to leverage the caching capa-
bilities of your user’s browser. You will learn how to apply both of these tech-
niques using IIS and ASP.NET.

 In addition, you will look at the new bundling and minification features in
ASP.NET 4.5 and how you can use them to drastically reduce the weight of your
JavaScript and CSS files. Both file types play an important role on the web today and
understanding where and how to position them within your HTML will squeeze the
best load times out of the browser. In this part, you’ll learn techniques that can
be applied by using HTML5 to improve the performance of your web pages.

28 PART 2 General performance best practices
 Images on a web page are frequently the big, ugly brother of web page perfor-
mance; they are heavy and often neglected. You will learn how to use image optimiza-
tion tools that will reduce the size of these images and how you can make image
optimization a regular feature of your websites.

 Finally, you’ll learn about Content Delivery Networks (CDNs) and how you can har-
ness the power of these geographically distributed servers to serve faster web pages to
your users throughout the world.

Compression
In this chapter we’ll look at the impact compression can have on your site—opti-
mizing front-end performance and taking you closer to your goal of a grade A per-
formance website.

 By using compression, you’ll reduce the size of each HTTP request a web page
makes, and each reduction will lighten, as it were, the overall weight of the page. By
the end of the chapter, you’ll be able to optimize your website with a number of
compression techniques in the .NET web technology stack. We’ll go through exam-
ples that are applicable to IIS, ASP.NET MVC, and Web Forms.

3.1 What is compression?
Compression is an algorithm that eliminates unwanted redundancy from a file in
order to create one that is smaller than the original representation. If both the
server and the browser understand this algorithm, it can be applied to the response

This chapter covers
■ The pros and cons of compression
■ The types of compression available
■ The sample application used in this book
■ How to apply compression to a website
29

30 CHAPTER 3 Compression
and request. Web browsers indicate that they support compression in the headers that
are sent to the server in the HTTP request. The web server sees this header in the
request and will try to compress the response that it sends back.

 Compression is extremely easy to implement and is a quick win. You’re about to
get up and running using compression, but first it’s important to understand the types
of compression.

 Look at the HTTP request in figure 3.1 and you’ll notice that the browser sent the
server a header called Accept-Encoding. This header notifies the server that it sup-
ports compression as well as the types of compression it supports, in this case, Gzip,
Deflate, and SDCH. Depending on the type of compression your browser supports, the
server will then compress its content accordingly and return a header in the HTTP
response called Content-Encoding. In the case of figure 3.1, the server has returned a
response notifying the browser that it compressed the data in Gzip format.

3.2 Why should I use compression?
In order to test the effectiveness of compression and evaluate the savings it could have
on different file types, I took a few common files that you’ll encounter and com-
pressed them using Gzip. The results are shown in table 3.1.

Table 3.1 Gzip compression’s effect on file sizes

File type
File size without

compression
File size after

compression with Gzip
Savings

HTML 6.52 KB 2.43 KB 62.74%

CSS 91.57 KB 21.12 KB 76.93%

Figure 3.1 A typical HTTP request and response for www.bing.com. Notice the Accept-Encoding and
Content-Encoding headers.

www.bing.com

31Why should I use compression?
In two of the files, there is a massive difference, with savings of over 70%. Gzip com-
pression works by finding similar strings within a text file, and replacing those strings
temporarily to make the overall file size smaller. This form of compression is particu-
larly well suited for the web because HTML and CSS files usually contain plenty of
repeated strings, such as whitespace, tags, and style definitions. You’ll notice that the big-
gest savings were made on text-based files and there were hardly any gains on the image
file. Image files are already compressed, so applying compression to them doesn’t
bring much reward.

 There is also a direct correlation between the size of the file and the amount of
savings (compression) that takes place. As a general rule the larger the file the
greater the savings, primarily because larger files contain more whitespace and char-
acter repetition.

 Chrome Developer tools allow you to compare file sizes before and after applying
compression. Figure 3.2 shows these differences.

NOTE In chapter 2 you used a variety of developer tools. By hitting the F12
key on most computers, you can easily bring up the developer tools in your
browser of choice.

Twitter Bootstrap is a popular CSS framework that will help you develop your CSS
styles quickly so you can get your project running in no time. The CSS files contain a
lot of whitespace and style tags, which make them perfect for compression. On the
main bootstrap.css file the file size was cut down to 21.12 KB, saving almost 76% on
the file size! This is a perfect example of why you should compress your CSS and
JavaScript files.

CSS 13.51 KB 3.89 KB 71.21%

JavaScript 1.75 KB 1.18 KB 32.58%

Image 6.76 KB 6.51 KB 3.7%

Table 3.1 Gzip compression’s effect on file sizes (continued)

File type
File size without

compression
File size after

compression with Gzip
Savings

Figure 3.2 The difference in file sizes before and after using Gzip

32 CHAPTER 3 Compression
3.3 Pros and cons of compression
When first working with compression, some web developers will compress only the
HTML file they’re sending to the browser. They don’t compress all the other compo-
nents that make up a web page, such as the CSS, JavaScript, XML, and JSON files. It’s
far better to compress as many components as you can, whenever you can, to reduce
the total page weight as much as possible.

 There is also a cost associated with compression; the server needs to apply an algo-
rithm to compress the files, and this can affect the CPU usage on the server. There is a
bit of a tradeoff between CPU usage and the savings in file size, but if the compression
settings are controlled and fine-tuned, the benefit of compressing files can far out-
weigh the extra CPU usage on the server.

 As a general rule, it’s best to compress files that are larger than 1–2 KB. Even if the
server manages to compress the file by 50%, you’ll save only 1 KB. Every byte counts
on a web page, but the server still needs to work hard to process each file, regardless
of its size. By asking the server to compress files this small, you’re placing an unneces-
sary load on the server, which could have a detrimental effect on server response time.

 You should also make sure that you don’t try to compress PDF, zip, and image files,
because these types of files have already been highly compressed. Processing them
again on the server only adds an unnecessary load on the CPU that won’t reap any
rewards and can affect the client wait time. Fortunately, IIS 7+ offers a great feature
that throttles CPU usage.

 Throttling CPU usage means that when CPU usage gets beyond a certain level, IIS
will automatically stop compressing pages. When usage drops to an acceptable level,
the CPU will start compressing pages again. This feature is a great safety net because it
ensures that your application won’t be affected if it does come under heavy load.

IIS trades bandwidth and page load times for server CPU usage. So when the load is
high enough that IIS starts throttling the CPU, the site reverts to its precompression
performance levels, sacrificing the benefits of compression in order to keep the appli-
cation running. You’ll learn about this in more detail later in the chapter.

3.4 Types of compression
Compression capability has been built into web servers and web clients to make better
use of available bandwidth and to provide faster transmission speeds between both.
There are many types of compression, but almost all of them have little browser sup-
port. When you’re looking at all the options, it’s important not to become too worried
because ultimately IIS will take care of compression for you. You’ll look at the most
common compression options now, which are the ones you’ll most likely encounter in
your day-to-day life as a developer.

3.4.1 Gzip

Gzip is a lossless data compression algorithm that compresses files and data without
affecting the integrity of its contents. It allows the original data to be reconstructed

33Accept-Encoding
from the compressed data. When compared to other types of compression commonly
used in HTTP traffic, Gzip is known to achieve higher compression ratios, resulting in
smaller file sizes. To date, it’s also the most widely used format because it’s available
freely and isn’t blocked by any patents or other restrictions. Because this is the most
common compression method and almost every browser that you’ll encounter today
supports it, this is the compression format you’ll focus on in this chapter.

3.4.2 Deflate
Another type of compression you might see browsers using in the Accept-Encoding
request headers is Deflate. Much like Gzip, Deflate is a lossless data compression algo-
rithm that compresses files and data without affecting the overall integrity of its contents.
There isn’t a lot of browser support for this type of compression, so it isn’t as widely used.
You’ll often see that browsers that support Deflate will also support Gzip, but because
Gzip achieves a higher compression ratio and smaller file sizes, the latter is often the pre-
ferred compression method. Fortunately for IIS users, IIS 7+ supports Deflate. This widens
the variety of compression methods that you’re able to serve your users.

3.4.3 SDCH
A newer type of compression that has recently started to appear in the Google
Chrome Browser is SDCH (Shared Dictionary Compression over HTTP). Google has
proposed it as a modification to HTTP 1.1. The support for it is minimal; however, it’s
still worth mentioning because it’s a new type of compression that could become
more widespread in the future.

3.5 Accept-Encoding
Let’s look at a typical HTTP response before it’s decompressed by the browser. Figure 3.3
shows an HTTP response from msdn.microsoft.com.

Figure 3.3 An HTTP Response for msdn.microsoft.com. The image is cropped
because of its size, but note the encoded text in the response body.

34 CHAPTER 3 Compression
As you can see, the content is encoded and is garbled. This is what the browser sees
before it’s decompressed and displayed on the screen.

 What happens when an error occurs on the server? What happens if the browser
doesn’t support the compression type even if the server sends it back? Mistakes can
happen and the user might see a garbled response on their screen like the data in fig-
ure 3.3. This rarely happens, but it’s important to have a fallback plan for such
instances. This is where the Vary header comes in.

 The Vary header allows the server to return different cached versions of the page
depending on whether or not the browser requested Gzip encoding. The Vary header
instructs the cache to store a different version of the page if there’s any variation in the
indicated header. I like to think of the Vary header as fail-safe because it instructs
the server to vary its cache based on the Content-Encoding type. The server then creates
a separate cached copy of the page for each Content-Encoding type, which means that
each Content-Encoding type requested by the browser will have a specific cached ver-
sion ready for it.

3.6 The Surf Store application
To help you apply what you’re learning in this book, you’ll create a sample application
called Surf Store in this chapter and build upon it throughout the remainder of the
book. You’ll be able to apply each technique you learn and run through the perfor-
mance cycle that we discussed in chapter 1. The Surf Store application simulates an
e-commerce store and will be similar to many sites you see online today. The sample
application may seem rather basic, but its web pages contain all the elements that a
standard website would have.

 The Surf Store application shown in figure 3.4 contains three main pages: a Home
page, an About page, and a Contact page. The Home page lists the products that are
for sale and the product categories. On the left side of the Home page, you’ll notice

Figure 3.4 The Surf Store application

35Adding compression to your website
that top-level categories are represented by links in a menu. These links, as well as the
images on the page, allow you to navigate to a Product page that lists the products in
that particular category. The About page contains a short description of the website,
and the Contact page contains a form that allows website users to contact the Surf
Store staff. Each page contains JavaScript, CSS, HTML, and images, and all of these are
the front-end elements that we’re trying to improve upon.

 You’ll have the choice of building the sample application in either ASP.NET Web
Forms or ASP.NET MVC. Then you’ll be able to use whichever part of the ASP.NET
development framework you’re most comfortable with. In order to use the Surf Store
application, you’ll need a copy of Visual Studio 2012 or a free copy of Visual Studio
Express 2012, which is available for download at www.microsoft.com/visualstudio/11/
en-us/products/express. I’ve made the project source code available for download
on Github at https://github.com/deanhume/FastASPNetWebsites. Once you’ve navi-
gated to the source code on Github, you can download all the files you need as a sin-
gle zip file.

 As you progress through the book, you’ll apply the different optimization tech-
niques you’ll learn about in each chapter and compare the pre- and post-optimization
results. Once you’ve downloaded the code, most chapters in the book will have a cor-
responding folder that contains Before and After subfolders, as shown in figure 3.5.
You’ll be able to use the concepts described in each chapter and apply them to the
code in the Before folder. If you’re unsure or become stuck, refer to the completed code
in the After folder. Once you’ve reached chapter 12, you’ll notice a dramatically dif-
ferent site that is very fast!

3.7 Adding compression to your website
Adding compression to your website is extremely easy and rewarding. Your hosting
solution will determine which techniques to use. If you have full control of your server
and are able to log into the IIS settings, it’s advisable to apply the changes to the IIS
settings first.

 There are two different types of content that get compressed on the server: static and
dynamic. Static content typically is associated with file types that don’t change often:

■ HTML, HTM files
■ JS, CSS
■ TXT
■ DOC (Word)

Figure 3.5 The Surf Store’s download folder structure

www.microsoft.com/visualstudio/11/en-us/products/express
www.microsoft.com/visualstudio/11/en-us/products/express
www.microsoft.com/visualstudio/11/en-us/products/express
https://github.com/deanhume/FastASPNetWebsites

36 CHAPTER 3 Compression
■ XLS (Excel)
■ PPT (PowerPoint)

Once IIS has compressed static content, it caches it, which increases compression per-
formance. Once the static files have been compressed, IIS 7 serves any further requests
from the compressed copy in the cache directory.

 Dynamic content typically is associated with file types that change often and can
be produced by server-side code. Examples include JSON, XML, and ASPX. Dynamic
content is processed the same way as static content; the only difference is that once
it’s been processed, it isn’t cached to disk. Due to the nature of the files and because
they could change on every request, IIS processes and compresses them each time
they’re requested.

3.7.1 Using IIS to add compression to a website

Now we’re going to run through an example, applying compression to the Surf Store
application in no time with IIS. You may not always have direct access to IIS, but using
IIS is the easiest and quickest way to add compression to your site. If you’ve never
before set up a website using IIS and would like to learn how to use your local machine
as a web development server, please refer to the appendix of this book.

 To start adding compression to your website, navigate to the Internet Information
Services (IIS) Manager (figure 3.6).

Figure 3.6 Step 1 in enabling compression in IIS 7

37Adding compression to your website
If you’re using Windows Server 2008 or Windows Server 2008 R2:

■ On the taskbar, click Start, point to Administrative Tools, then click Internet
Information Services (IIS) Manager.

If you’re using Windows Vista or Windows 7:

■ On the taskbar, click Start, then click Control Panel.
■ Double-click Administrative Tools, then double-click Internet Information Ser-

vices (IIS) Manager.

Next, check the boxes to enable dynamic and static compression and click Apply (fig-
ure 3.7).

 It’s as simple as that! If you view the same website using your browser, you can
immediately see the differences. If a client is not capable of HTTP compression, it will
not pass that header and IIS 7 will always return uncompressed content. Figure 3.8
illustrates how the requested file sizes have undergone huge reductions. The largest
JavaScript file (the jQuery library) went from 246.95 KB to 95.71 KB, reducing the
total file size by 151.24 KB, a 61.25% savings. The CSS file that’s being used as this
application’s base (Twitter Bootstrap) went from 97.55 KB to 21.97 KB, which works
out to a 77.5% reduction of the total file size. That’s a pretty impressive saving.

 As you can see, the individual file sizes have been reduced, but how has this
affected the overall page weight? It went from 985.55 KB to 745.29 KB, which is almost
a 25% reduction in total page weight! To enable compression on the server, all you
needed to do was check two check boxes, a simple act that shaved about 240 KB off the
total weight of the page.

Figure 3.7 Step 2 in enabling compression in IIS 7

38 CHAPTER 3 Compression
3.7.2 Using a Web.config file to add compression to a website
Okay, so what happens when you don’t have access to the server? You may be using
shared hosting to host your website, or you may be working in an environment where
you don’t have access to IIS Manager. Fortunately, you can still configure and enable
compression for your website by using the Web.config file. If you aren’t already famil-
iar with Web.config, it’s a standard XML file that’s included whenever you start build-
ing a new ASP.NET application. It contains all the configuration settings for the
application and it allows you to control and fine-tune your application’s compression
settings. Figure 3.9 shows the code you’ll need to add to your Web.config file in order
to enable compression on the server.

 You can specify the different file or MIME types that you want the server to com-
press under the dynamicTypes and staticTypes elements in the Web.config file. Both

Figure 3.8 The file size savings after adding Gzip to the Surf Store application

Figure 3.9 The Web.config settings that enable IIS compression

39Adding compression to your website
elements are visible in figure 3.9. It isn’t advisable to process everything. As you’ll
recall, some file types are already compressed so you’ll only waste valuable CPU
resources if you attempt to compress them again. Remember that images and PDFs are
already quite compressed, so the savings you’ll gain from compressing these file types
will be minimal. The most common file types that should be compressed are:

■ CSS
■ JavaScript
■ JSON
■ RSS
■ HTML
■ XML

The urlCompression element is another quick way to enable or disable compression
on your website. The urlCompression element is shown in figure 3.9.

 It only has three attributes: doStaticCompression, doDynamicCompression, and
dynamicCompressionBeforeCache. The first two settings are simple on/off switches;
the third attribute specifies whether IIS will dynamically compress content that has not
been cached. When the dynamicCompressionBeforeCache attribute is enabled, IIS will
dynamically compress the content the first time a request is made. Every request will be
compressed dynamically until the response has been added to the cache directory.
Once the compressed response is added to the cache directory, the cached response is
sent to clients for subsequent requests.

 Another compression setting that I find useful is minFileSizeForComp, which
stands for “minimum file size for compression.” Earlier in the chapter, we talked
about how compression works best on larger files and how CPU levels are affected
when it has to process a lot of smaller files. Using the minFileSizeForComp attribute
allows you to set a minimum number of bytes a file must contain in order to use on-
demand compression. The default size that it will compress in IIS 7.5 is 2,700 bytes
and in IIS 7 it is 256 bytes.

 Earlier in the chapter, I mentioned that IIS has the ability to throttle the CPU usage
of the server. It gives you the ability to specify the percentage of CPU utilization at
which dynamic compression will be disabled or re-enabled. You can specify the CPU
percentage at which dynamic compression will be disabled by adding and setting the
optional DynamicCompressionDisableCpuUsage attribute in your Web.config file. The
attribute is set with an integer field and represents the percentage at which it will dis-
able itself. On the opposite side, the DynamicCompressionEnableCpuUsage attribute
specifies the percentage of CPU utilization at which dynamic compression will be re-
enabled. These two attributes are useful when you have to keep CPU usage on your
server to a minimum.

 There are many other great attributes you can use to fine-tune your compression set-
tings. For more information and the full list, please visit www.iis.NET/ConfigReference/
system.webServer/httpCompression.

www.iis.NET/ConfigReference/system.webServer/httpCompression
www.iis.NET/ConfigReference/system.webServer/httpCompression

40 CHAPTER 3 Compression
3.7.3 Adding compression with other techniques
There are other ways to add compression to your website in ASP.NET, but I wouldn’t
recommend them. Applying compression to your application with IIS and Web.config
is the simplest and most effective way of optimizing your website. They both integrate
with IIS and their settings can be maintained easily. If you’re interested in other com-
pression methods, there are a few NuGet packages, custom-written libraries, and tech-
niques you can use to add compression to your website programmatically, but as a
general rule, I try to stay clear of them. Writing code to add compression to your site
can cause unwanted side effects and if there’s an error, your users could be presented
with a garbled page. Often you’ll find that adding the compression programmatically
will end up compressing only the HTML, but we want to compress as many compo-
nents in the web page as possible. It’s best to leave this up to the built-in server tools
and let them handle the delicate details for you.

 Another downside to using other compression techniques is that you can’t control
CPU usage or fine-tune processes the way you can with the Web.config method. With
all that said, you may find yourself in a situation where you can’t use the native IIS set-
tings or your Web.config file. Proceed with caution!

3.8 The results
You’ve just applied compression to the Surf Store application using either IIS or
Web.config. Now you can use some of the tools that were discussed in chapter 2 to mon-
itor the results of the changes you’ve made. Before applying any compression to the
Surf Store application, you should use the Google PageSpeed extension to generate a
list of suggestions and best practices. Figure 3.10 shows that compression is at the top
of the list, and that the PageSpeed score is low.

Figure 3.10 The performance score of the Surf Store application before adding compression. The
Google PageSpeed tool was used to determine the score.

41The results
Now that you’ve optimized the Surf Store application, you should run the PageSpeed
tool to see how much the site’s speed was improved. You can see the results in figure 3.11.
After adding compression, the site jumped from a 57 PageSpeed score to an 85. You
also managed to cut the total page weight down from 985.55 KB to 745.29 KB. That’s a
healthy reduction of 240.26 KB!

 I suggest you run the Yahoo! YSlow tool on the same version of the site as a compari-
son. YSlow yielded similar results, as you can see in figure 3.12. The Yahoo! YSlow score
jumped from a C to a B grade, and the score for adding compression jumped to an A.

Figure 3.11 The Surf Store application’s performance score, after compression, as calculated by
the Google PageSpeed tool

Figure 3.12 The Surf Store application’s performance score as calculated by the Yahoo! YSlow tool

42 CHAPTER 3 Compression
You may be wondering why the total page weight originally came in at 985.55 KB and
why the total weight is such a high number, even after compression.

 Figure 3.13, a repeat of figure 1.3, shows us that, on average, the total weight for
a web page is around 1.09 MB. The Surf Store application is intended to be as close
to that number as possible, so you can simulate real-world examples when you run
through these exercises.

3.9 Summary
In 2009, a Google blog1 claimed that more than 99 human years are wasted every day
because of uncompressed content. Such content wastes bandwidth and increases the
amount of time users spend waiting for a web page to load. Although support for com-
pression is a standard feature of all modern browsers, there are still many instances
when users don’t receive compressed content.

 In this chapter you learned some simple techniques to enable compression on
your website. Simply updating IIS or updating your application’s Web.config settings
applied compression to the Surf Store application. There was also a marked improve-
ment in the reduction of the total page weight and the performance tools’ scores.

 By adding compression, you’re moving one step closer to a speedy, optimized web-
site. As you can see from the examples in this chapter, it takes almost no time to imple-
ment compression on your website. If you only add one performance feature to your
website, I highly recommend that you add compression today.

1 Arvind Jain and Jason Glasgow, “Use Compression to Make the Web Faster,” Google Developers Blog, June
2013, http://mng.bz/e6bp.

Figure 3.13 The average total page
weight (source: HttpArchive.org)

http://mng.bz/e6bp

Caching: The sell-by date
It’s important to know where the bulk of your website visits come from. If you
have a lot of repeat visits or if many people view more than one page before
leaving your website, then HTTP caching can have a positive effect on your page
load times. Modern browsers are really clever; they can interpret and under-
stand a variety of HTTP requests and responses and are capable of storing and
caching data until it’s needed. With the introduction of HTML5 and CSS3, mod-
ern browsers have become capable of achieving so much more than they could a
few years ago. I like to think of the browser’s ability to cache information as the
sell-by date on milk. In the same way that you might keep milk in your fridge
until it reaches its expiration date before replacing it with a new carton of milk,
browsers can cache information about a website for a set duration of time. After

This chapter covers
■ HTTP caching and why you should use it
■ How to set HTTP caching in IIS
■ Caching considerations
■ File versioning
■ Output caching
■ HTTP caching results
43

44 CHAPTER 4 Caching: The sell-by date
the data has expired, it will simply go and fetch the updated version upon your
next visit to the website.

 We briefly covered the differences between a primed cache and an empty cache in
chapter 2. When you visit a website for the first time, your browser stores the compo-
nents you download in a temporary cache. It does this so it can easily retrieve the com-
ponents the next time you visit the same website. This, in turn, speeds up your
download time.

 The chart at the top of figure 4.1 shows the components of a web page that have
not yet been cached. The total page weight is quite high and the browser will need to
make 13 HTTP requests to fully load all the components it needs when a user visits the
website for the first time. The chart at the bottom of the figure shows a primed cache
for a user who has already visited the website with HTTP caching enabled. The total
page weight is down to 11.4K from 1146.6K and most of the HTTP requests that it
needs to make all came from within the browser’s own cache.

 HTTP caching’s main purpose is to use the browser’s cache to its advantage. If a
user revisits a website, their browser can simply retrieve the components it needs from
the browser cache instead of hitting the server again.

4.1 What is HTTP caching?
Most websites today are made up of similar components. Often these components,
such as CSS and JavaScript, are shared across multiple pages, so by caching them, you

Figure 4.1 The difference between an empty cache and a primed cache. Notice
the difference in their total weights.

45What is HTTP caching?
effectively speed up any other pages on your site that a first time visitor would see as
he browses your website.

 Although the majority of visitors to your website might be new, remember that a
large percentage of them might be returning. These returnees will experience
extremely fast load times and benefit greatly from HTTP caching. Depending on the
nature of your website, you may experience high volumes of returning visitors or
really low numbers of returning visitors. Whichever way you look at it, adding HTTP
caching will benefit all users whether they spend a lot of time navigating through your
website or if they simply glance at it and return at a later date.

 A web server can take advantage of the browser’s ability to cache data and use it
to improve the repeat request load time. If a user visits the same page twice within
one session, there is usually no need to serve them a fresh version of the static files
that the page requires. This way, a web server can use the Expires header to notify
the web client that it can use the current copy of a component until the specified
expiration date. In turn, the browser will then cache this component and only check
again for a new version when the user revisits the site or when the component
reaches its expiration date. Let’s look a little deeper at the exact HTTP request and
response that takes place.

 Figure 4.2 shows a typical HTTP request that would be made for a CSS file the first
time a user visits a website. As you can see in figure 4.3, a response is returned from
the server with an Expires header.

 The Expires header has been added by the server and will notify the browser that it
can cache the component until this expiration date has passed. In the case of figure 4.3
it’s only one day, but depending on how often you change your files, you might want
to set this date a lot farther in the future. Once a website is stable, you’ll be surprised
at how seldom the components on a web page change. In chapter 5, we’ll take a closer
look at the best practices around expiration dates and how far in the future you
should set your components to expire. Chapter 5 also goes into detail about the
out-of-the-box support that Visual Studio 2012 provides for expiration dates.

 In figure 4.3, notice that another type of response header called Cache-Control was
returned. The Cache-Control header is an alternative to the Expires header, and it
works with time slightly differently. Cache-Control was introduced in HTTP/1.1 and

Figure 4.2 An HTTP request for a CSS file

46 CHAPTER 4 Caching: The sell-by date
offers more options than the Expires header. In particular, the Expires header uses an
exact date and time to specify an expiration; the Cache-Control header uses a max-age
in seconds to determine the expiration date from the time it was requested. Both head-
ers can be used together to notify the browser that it needs to cache the component for
a certain time and both are perfectly acceptable methods of expiring data. Fortunately
for you as a .NET developer, IIS will automatically determine when to use the Expires
header or when to use the Cache-Control header. We can easily set the Expires headers
in either our IIS web server or within the Web.config file of our application. Once the
settings have been applied, they’ll all be handled for you by the IIS web server.

 We have run through the steps that a browser makes when it requests a component
on a web page and it’s then told to cache the component, but what about when a sec-
ond request for a component is made? When a browser makes a repeat request for an
object that is still in its cache, it needs to check if anything has changed on the server
for that component since it was last requested. If nothing has changed, the server will
respond with a 304 HTTP status code notifying the browser that it has not been modi-
fied and that it can use the version stored in the browser’s cache. The 304 HTTP status
code is efficient because the server simply checks the component and returns a small
304 response instead of a full response with the contents of the component. Figure 4.4
shows a repeat request for a CSS file in action.

 Notice that this is a repeat request and nothing has changed on the server since
the component has been cached, so the server responds with a 304 HTTP status code.
It needs to do this to ensure that the file hasn’t changed on the server and that it’s still
okay to use the version that is stored in its cache.

4.2 IIS and HTTP caching
When you’re configuring Expires Response headers for your web application, it’s
important to consider the following information:

Figure 4.3 An HTTP response for a CSS file

Figure 4.4 A repeat request for a CSS file which returns a 304
HTTP status

47IIS and HTTP caching
■ Content that is updated regularly, on a daily or weekly basis, should be config-
ured to expire periodically.

■ Content that contains sensitive information that you do not want cached or that
is updated frequently should be configured to expire immediately.

■ Content that is not expected to change should be configured to expire in
approximately one year. You could set the expiration date to ten years in the
future, but given the frequency with which users clear and fill their cache, set-
ting an expiration date one year or ten years in the future might not make
much difference.

If you’re developing a website and have direct access to IIS, it’s easy to add an HTTP
Expires Response header. We’ll apply the changes to the Surf Store application now.
First, open up IIS Manager on your computer and navigate to the website that you want
to update. In this case, navigate to the Surf Store application, as shown in figure 4.5.

 Using IIS, you can choose to apply the Expires headers to individual folders or at
the root level of your website. In most cases, you’ll want to cache individual folders that
contain static files, such as your CSS files, JavaScript files, images, and so on. In the case
of the Surf Store application, I am choosing to apply the Expires header to the Styles
folder because it contains CSS files that won’t change regularly. Once you’ve selected
the folder to which you’re applying the caching, double-click HTTP Response Headers
in IIS Manager (figure 4.6).

 In the Actions pane on the HTTP Response Headers page, click Set Common
Headers. A window similar to the one in figure 4.7 will appear in IIS.

 Select Expire Web content and choose how long you want the browser to cache
the components. For this example, I chose 30 days. There is also the option to

Figure 4.5 Add an Expires
header to the Surf Store
application by first choosing
the website in IIS Manager.

48 CHAPTER 4 Caching: The sell-by date
choose Immediately and another option to expire the components on a specific
date and time.

 Using the Yahoo! YSlow tool, you can immediately see the difference after adding
the Expires header. If you load up the website and refresh the page, you’ll see that all the
CSS files in the Styles folder have been set to expire in the future and will not need to
fetch the website components again.

 In figure 4.8 you can see the two CSS files have an expiration date set from the date
the file was requested. Whenever the browser reloads that page, it won’t need to
request those two files again. If we apply the expiration to the Images and Scripts

Figure 4.6 Set the
HTTP Response Headers
in IIS Manager.

Figure 4.7 IIS–Adding
custom HTTP Response
Headers

49IIS and HTTP caching
folders, there should be an even more marked improvement in the repeat page load
time and primed cache. The weight of the repeat view of the web page in figure 4.9
has significantly reduced in size. It has gone from 1146.6K to 11.4K. We managed to
drop over a megabyte from the repeat page load! Imagine saving that amount of data
for each new and returning visitor to your site.

Figure 4.8 HTTP Response Expires for the CSS files in the Surf Store application

Figure 4.9 The Empty and Primed caches for the sample application after
adding Expires headers

50 CHAPTER 4 Caching: The sell-by date
4.3 Web.config settings
Much like compression, the expiration details
for static content can be set in the Web.config
file. This is useful if you work in a shared hosting
environment and you don’t have access to IIS.
You might find that you’re working on a website
that’s hosted with a lot of other websites and
your vendor restricts your access to certain ele-
ments of the server. You can even achieve the
same level of configuration detail you get with
IIS when you use the Web.config file.

 In order to add Expires headers to your
application, you’ll need to add the lines of code
shown in figure 4.10 to your Web.config file.

 This code will add an Expires header to all
static content that your application processes.
This will be handy when you need to apply
expiration details across your site, but what
about when you need to apply different settings
at the folder and file type level? Simply add the
code in figure 4.10 to a Web.config at the folder level instead of applying the settings
to the Web.config at the root level. Figure 4.11 shows the Web.config file inside the
Scripts folder.

 By adding a Web.config file to a specific folder, you’re ensuring that the caching
will occur for that folder instead of the entire application. This can be pretty useful,
especially when you need to only cache a certain set of files.

4.4 Caching considerations
It would be great if we could cache every component of a web page for a long period
of time, but this isn’t always possible in most modern web applications. Web applica-
tions are dynamic and need to serve up fresh content constantly. That’s why it’s impor-
tant to think about the different components that make up a web page and determine
each component’s caching needs.

Figure 4.10 Adding HTTP cache settings in the Web.config

Figure 4.11 The Web.config file is
inside the Scripts folder. This will cause
the caching to occur at the folder level
instead of throughout entire application.

51Output caching
 Depending on your website’s purpose, you may find that you’re actually able to
cache most of the components for a long period of time. However, what happens
when you develop and redeploy changes to these components? Your users might have
an old version of a file in their browser’s cache even after you’ve deployed a newer ver-
sion. Depending on the HTTP response details that are sent back, their browsers
might not check with the server for a newer version right away. This could lead to
problems if your users are viewing outdated components and information. Keep in
mind that as developers, we can easily press CTRL-F5 and force a full browser refresh,
but the average website user won’t understand that they need to do this.

 In chapter 1, you read about the performance cycle and the important role it plays
when you’re optimizing your website. While reading this chapter, keep in mind the
different stages of the performance cycle and where you currently stand. Once you’ve
applied HTTP caching to your website, it’s important to monitor any performance
changes and any effects this might have on your users. This includes any broken pages
that may occur due to incorrect file versions stored in their browser. As a developer,
instead of simply adding expiration dates to the web page components, think about
your users. How often do you deploy changes? How often do you expect the CSS and
JavaScript to change? These are all important questions to ask when analyzing how
long to cache components.

 To make sure the cache updates instantly when you deploy a new version of a file,
the best option is to rename the file. Simply changing the name of the component
forces the browser to request the new version of the file, because any references to the
old file are lost with its name. For example, if you have a CSS file called site.css and it
has an expiration date in a week, the browser won’t bother checking for any changes
within that week. However, if you change the HTML and update the name of the file to
site_v1.css, the browser will be forced to request this new file instead of using the old
one from its cache. One downside of this is that you’ll need to change the name of
your files each and every time you redeploy your application. This type of workaround
is known as file versioning or file revving. In chapter 5, we’ll look at ways that Visual
Studio 2012 automatically versions CSS and JavaScript for you when you combine this
technique with file minifying.

4.5 Output caching
We’ve added HTTP caching to the static components on a web page, but what about
dynamic components and especially the HTML web page itself? Fortunately, .NET has
a great built-in feature called OutputCache. It allows you to cache the contents of a
web page based on a number of different factors, such as the parameters passed in,
where cache is stored, or how long you’ll store the data.

4.5.1 Output caching in an ASP.NET MVC application

In ASP.NET MVC, the output cache enables you to cache the content returned by a
controller’s action so the same content doesn’t need to be generated each and every

52 CHAPTER 4 Caching: The sell-by date
time the same controller action is invoked. If applied to your controller correctly, it
can produce extremely fast repeat load times.

 It will be a lot easier to explain how output caching works if we use the Surf Store
application as an example. You can enable output caching by adding the OutputCache
attribute on an individual controller or an entire class. The following listing shows the
attribute being added to the sample Surf Store application.

[OutputCache(Duration = 100, VaryByParam = "none")]
public ActionResult Index()
{
 return View();
}

The code in the listing will cache the output of the Index() action for 100 seconds.
Any additional requests made to the web page within that time frame will receive
lightning-fast response times because the content of the web page has been cached
on the server.

 You can tell the OutputCache attribute to adapt its caching activities to meet vari-
ous parameters. For example, you might want to display personalized content for indi-
vidual users. Think about the sites, such as Amazon or Facebook, that you log onto
daily. These sites need to cache frequently used data and vary the personalized con-
tent they display based for each user. The VaryByParam property you saw in listing 4.1
helps you accomplish this task. The property can be set to contain a semicolon-sepa-
rated list of strings to vary the output cache. So depending on the parameters passed
in, users will see a different cached version of the website. VaryByParam can use the
following values:

■ None—The output will not be cached.
■ *—The cache will vary based on every parameter that is passed in.
■ Any valid query string or POST parameter name—The cache will vary based on a

particular parameter or parameters.

If you used the output cache but didn’t vary it based on parameters, you’d find that
different users would see the same content, rather than web pages that were personal-
ized for their individual interests. This isn’t ideal in modern websites, where content
must be dynamic and personalized for each user!

 Let’s apply a different output cache to the Product page of the Surf Store applica-
tion. In listing 4.2, the OutputCache attribute has been added to the Action and is
being cached for an hour (or 3600 seconds). We’re varying the cache based on the
"category" parameter, so every time the parameter changes, the server will store a
different copy of the action based on the parameter. This VaryByParam property is
particularly useful when dealing with dynamic web pages because it allows you to serve
different content to your users depending on the parameters passed in.

Listing 4.1 Applying output caching to an Action

Applying the attribute to
the Action on the controller.
The output cache will expire
in 100 seconds.The Action

53Output caching

ute

d.
[OutputCache(Duration = 3600, VaryByParam = "category")]

public ActionResult Product(string category)

{
List<ProductModel> productModel = new List<ProductModel>();

 // Check if a category was passed in first.
 if (!string.IsNullOrWhiteSpace(category))
 {
 // Retrieve the product images
 Utils.ImageUtils imageUtils = new ImageUtils();
 var productImages = imageUtils.RetrieveProductImages(category);

 // Loop through and add to our Model
 foreach (FileInfo productImage in productImages)
 {
 string imagePath = "~/Content/Images/" +
 category +
 "/" +
 productImage.Name;

 productModel.Add(new ProductModel
 { ImageDescription = productImage.Name.Replace(
 productImage.Extension,
 ""), ImageUrl = imagePath
 });
 }
 }

return View(productModel);
}

As a default setting, the OutputCache attribute caches content in three locations: the
web server, any proxy servers, and the web browser. In certain circumstances, you
might want to specify exactly where the content is cached. You can do so by modifying
the Location property of the OutputCache attribute.

 The Location property can use the following values:

■ Any—This is the default setting. The output cache can be stored on either the
requesting client or the server.

■ Client—The output cache is stored on the browser client where the request
originated.

■ Downstream—The output cache can be stored on any device other than the
web server.

■ Server—The output cache is located on the server where the request was
processed.

■ None—The output cache is disabled for the requested page.
■ ServerAndClient—The output cache can be stored on the server and on the

requesting client.

Listing 4.2 Applying OutputCache to the Product page

Applying the attrib
to the Action on
the Controller.
VaryByParam is use

The Action Method
and the dynamic code
that is executed.

The code inside this method
is retrieving product details
from the database.

54 CHAPTER 4 Caching: The sell-by date

e
ld
n.
o
t.
d
is
e
r.
You might use the Location property when you’re caching information that’s person-
alized for each user. In that case, it’s better not to cache the information on the server,
but rather on the client.

 The next listing shows how to apply the Location property to the Surf Store appli-
cation’s OutputCache, telling the server where the browser should store the data.

[OutputCache(Duration = 86400,
VaryByParam = "category", Location = OutputCacheLocation.Client)]
public ActionResult Product(string category)
{
List<ProductModel> productModel = new List<ProductModel>();

 // Check if a category was passed in first.
 if (!string.IsNullOrWhiteSpace(category))
 {
 // Retrieve the product images
 Utils.ImageUtils imageUtils = new ImageUtils();
 var productImages = imageUtils.RetrieveProductImages(category);

 // Loop through and add to our Model
 foreach (FileInfo productImage in productImages)
 {
 string imagePath = "~/Content/Images/" +
 category + "/" +
 productImage.Name;

 productModel.Add(new ProductModel {
 ImageDescription =
 productImage.Name.Replace(
 productImage.Extension, ""
),
 ImageUrl = imagePath });
 }
 }

return View(productModel);
}

We added an Expires header to the components of a web page at the beginning of the
chapter, and now we’ve added an Expires header to the web page itself. Let’s look at
the HTTP response that’s returned for the Products page after adding output caching
in figure 4.12.

 The Expires and Cache-Control headers in figure 4.12 have been set to expire 24
hours from the date of the request. The browser won’t bother checking with the
server to see if the item has changed, which saves the user another request to the server
for the HTML of the page.

4.5.2 Output caching in an ASP.NET Web Forms application

Adding output caching to an ASP.NET Web Forms page is similar to an MVC applica-
tion, except it’s applied at the page level. The pages in a Web Forms application will

Listing 4.3 Applying the Location setting to the OutputCache

The OutputCach
attribute has a new fie

added to it called Locatio
The Location setting is set t

store the output cache on the clien
The output cache is also being applie

for a duration of one day and
being varied based on th

category paramete

The Action and
the dynamic code
that is executed

55Output caching
render extremely quickly if output caching has been applied; by adding a few attri-
butes, you’ll notice the speed of your application improve instantly. You’ll need to add
the OutputCache attribute to the top of the web page, as shown in figure 4.13.

 The OutputCache attribute applied to the web page will start caching content with
an expiration date of one hour. At the moment, it will serve the same content for
every user regardless of the output from the server. Earlier, we discussed how a website
such as Facebook or Amazon might want to serve different content to different users
based on the user parameters passed to the page. The code in figure 4.13 doesn’t do
that, but you can add that ability with the VaryByParam setting. Let’s take a look at this
in figure 4.14.

 The code in figure 4.14 will cache the details of the Product page for the one
hour, or 3600 seconds. The code also has more detail in the VaryByParam setting
and will vary its cache according to the category parameter passed to the page.
Finally, the cache will be stored on the web server and requesting client (browser)
using the Location setting.

 The Product page in the Surf Store application will need to serve dynamic content
based on each different category that gets passed through, so you’re setting the cache
with the "category" parameter. For example, if you’re on the Product page and see
the wetsuits section, a value of "wetsuit" was passed through in the category parame-
ter. To make sure you cache the correct category, you need to make sure the cache is
varied based on this parameter.

Figure 4.12 Applying output cache to
a web page

Figure 4.13 Applying OutputCache to an ASP.NET Web Forms page

56 CHAPTER 4 Caching: The sell-by date
4.6 The results of HTTP caching
Now that you’ve applied caching across our Surf Store application, let’s run it through
Google PageSpeed and Yahoo! YSlow to see if you’ve improved its performance score.

 In chapter 3, you applied compression to the sample application and bumped the
PageSpeed score up to 85. After applying the HTTP caching changes in this chapter,
the PageSpeed score has increased to 89, as shown in figure 4.15.

 If you run the sample application through the Yahoo! YSlow tool, the results are
pretty impressive! See figure 4.16.

 The site increased its score from 81 to 91, simply by adding HTTP caching. This is a
significant increase, taking you a step closer to achieving a perfect score for the Surf
Store application.

Figure 4.14 Applying output cache to the Product page with the VaryByParam and
Location properties

Figure 4.15 The
Google PageSpeed
score after applying
HTTP caching

Figure 4.16 The
Yahoo! YSlow score
after applying HTTP
caching

57Summary
4.7 Summary
You’ve covered a lot of ground in this chapter. You learned how browsers cache the
components that make up a web page and how you can harness this cache to reduce
repeat HTTP requests. HTTP caching allows you to store static components in the
browser’s cache, so the next time a user requests any one of these components, it will
immediately be retrieved from the cache. This means fewer repeat HTTP requests and
a hugely decreased repeat page load time.

IIS plays an important role when it comes to HTTP caching. Using IIS, you have full
control of the caching settings you wish to apply to your web page components.
Understanding the duration to cache your components for is an important part of web
page performance: too long and your users might have content that is out of date, too
short and you don’t gain the benefits of caching. Using the performance cycle will
help you analyze your application as a whole and think about how each component
affects the overall load of each page.

 In the next chapter, we will look at the new bundling and minification features that
have been built into ASP.NET 4.5 and how you can use them to drastically improve
your page load times.

Minifying and
bundling static files
As a web developer, it’s important for you it’s important for you to look for imagi-
native ways to improve your page load times. This often involves reducing the num-
ber or weight of the HTTP requests that a user makes when loading a web page. In
this chapter we examine bundling and minification, which will help you make
fewer HTTP requests and severely reduce the weight of your web pages. ASP.NET 4.5
has fantastic new features that allow you to apply both techniques to your web
application easily and automatically. By the end of this chapter, you’ll be able to
apply these techniques to your web applications in no time!

5.1 What is minification?
Most developer-written JavaScript or CSS contains loads of extra spaces and line
breaks that don’t get run when the code is executed. Removing these unnecessary

This chapter covers
■ What is minification?
■ What is bundling?
■ Why should I minify or bundle my static files?
■ Minification and bundling in ASP.NET MVC and

Web Forms
59

60 CHAPTER 5 Minifying and bundling static files
spaces and line breaks, a technique known as minification, reduces the overall size of
the file and, in turn, results in faster page load time, without affecting the integrity of
its contents. The code downloads and executes faster, but the code will run in the very
same manner—it’s an easy win!

 When CSS or JavaScript is minified, it starts to lose its
readability. It’s important to understand that while humans
might struggle to read the code, the browser will have no
trouble processing it. This is a necessary evil because the
removal of whitespace and the obfuscation that results will
ultimately help the file load faster. The built-in support for
minification that comes with Visual Studio 2012 is also intelli-
gent enough that while you’re developing you’ll be able to
see the full, unminified code. When you run your website in
Release mode, the code will automatically get minified on
the fly for you.

 In the Surf Store application, we’ve added HTTP caching
and compression, which has drastically improved the page
load speed. But if we run the sample application as it stands
against the Google PageSpeed tool, there are still things that
need to be done in order to improve our PageSpeed score. One of the most impor-
tant things you can do to boost page load time is minify JavaScript (figure 5.1).

 If we take a typical CSS file and minify it, the results compared to the original ver-
sion are very different in both appearance and file size. The next listing shows a CSS
snippet before it’s been minified.

/*This is a comment*/
h1 {
 font-size: 30px;
 line-height: 36px;
}

h1 small {
 font-size: 18px;
}

h2 {
 font-size: 24px;
 line-height: 36px;
}

h2 small {
 font-size: 18px;
}

h3 {
 font-size: 18px;
 line-height: 27px;
}

Listing 5.1 CSS code before minification

Figure 5.1 The remaining
improvements that need
to be implemented,
according to the Google
PageSpeed tool

Standard CSS formatting
with line breaks and spaces

61What is minification?
h3 small {
 font-size: 14px;
}

As you can see, the CSS contains unnecessary spaces, tabs, and line breaks. Although
this makes the code a lot easier to read and prettier to the human eye, ultimately it
adds extra weight to the overall size of the file. The next listing shows you what the
code looks like after it’s been minified.

h1{#1 font-size:30px;line-height:36px}h1 small{font-size:18px}h2{font-
size:24px;line-height:36px}h2 small{font-size:18px}h3{font-size:18px;
line-height:27px}h3 small{font-size:14px}

Differences between the two listings are visible immediately. The code has no spaces,
and the comments, tabs, and line breaks have been removed, making the code snip-
pet a lot smaller. These two examples use a small piece of code, but imagine the dif-
ference this could make if minification were applied to all the CSS and JavaScript in
your application.

 JavaScript can be minified and obfuscated to reduce the file size even further.
Look at the following JavaScript code before it has been minified.

$(document).ready(function () {
 //Detect enter key
 $('#barcodeValue').keyup(function (event) {
 if (event.keyCode == 13) {
 validateString($("#barcodeValue").val(),
 $("#barcodeType option:selected").val());
 }
 });

 // Hide the value textbox
 $("#barcodeValue").hide();

 // Drop down changed
 $("#barcodeType").change(function () {
 // show the value textbox
 $("#barcodeValue").show();

 // Prepend the textbox if necessary
 shouldPrepend();
 });
});

The code in the next listing has been obfuscated and minified, and there’s a big dif-
ference in the readability of the file when you compare it to listing 5.3. Although the
minified code isn’t easy on the human eye, it’s perfectly acceptable to use the com-
pressed version on the server after development has been completed.

Listing 5.2 CSS code after minification

Listing 5.3 JavaScript code before minification

The code contains comments
and unnecessary whitespace.

The method names
are longer than they
need to be, adding
weight to the file.

62 CHAPTER 5 Minifying and bundling static files
$(document).ready(function(){$("#barcodeValue").keyup(function(a){if(a.key
Code==13){validateString($("#barcodeValue").val(),$("#barcodeType
option:selected").val())}});$("#barcodeValue").hide();$("#CreateButton")
.hide();$("#alertBox").hide();$("#progressBar").hide();$("#infoLink").hide();
$("#barcodeType").change(function(){$("#barcodeValue").show();$("#CreateButton")
.show();shouldPrepend()})});

Developers often like to keep two versions of their code: one for debugging and one
for deployment in a live environment. When you visit the jQuery website, you’ll notice
that there’s an option to download a minified version of jQuery. The filename will
often end in .min.js, which has become the standard method of naming the files. The
unminified version will be named something like jquery-1.8.0.js, while the minified
version will be called jquery-1.8.0.min.js. This makes it easy to identify the files while
you’re developing your application.

 Table 5.1 contains a list of common JavaScript and CSS frameworks and the differ-
ences in their file sizes before and after minification.

As you can see from table 5.1, the size savings vary considerably across the different
files, and is probably due to factors such as whitespace, comments, and line breaks. If
we can achieve this level of file size savings with no functional changes to our code, it
seems obvious that minifying the code is a free and easy win.

 Later in this chapter we’re going to automatically apply minification to the files in
the Surf Store application with the new built-in features in ASP.NET 4.5 and Visual Stu-
dio 2012. If you prefer to minify your files manually, there are many online tools that
allow you to do so.

 The online YUI compressor uses the Yahoo! YUI compressor to easily minify both
JavaScript and CSS. All you have to do is paste the contents of the file into the textbox
and you’ll be presented with an option to download the minified file. The web appli-
cation is available at http://refresh-sf.com/yui/.

 Another tool for use with JavaScript is the Google Closure Compiler. It’s used in
many of Google’s JavaScript apps, including Gmail, Google Web Search, Google
Maps, and Google Docs. An online version of the tool is available at closure-
compiler.appspot.com.

 There are many other tools available on the web, but keep in mind that each might
use a different algorithm and a slightly different method of minification. What’s

Listing 5.4 javaScript code after minification

Table 5.1 Common JavaScript and CSS frameworks and their minification file size savings

Filenames File size before minification File size after minification File size savings

jQuery 225.78 KB 93.28 KB 58.68%

jQuery Mobile 240 KB 91 KB 62%

Twitter Bootstrap CSS 298 KB 80 KB 19%

http://refresh-sf.com/yui/

63New bundling and minifying features in ASP.NET 4.5
important is that they all use minification techniques that significantly reduce the size
of these files. The only downside to using these online tools is that the minification
process is manual; you’ll have to upload each version of your CSS and JavaScript and
wait for the download before adding it back into your project. Later in the chapter,
we’re going to explore the built-in minification support that Visual Studio 2012 offers,
which will automatically handle this for you.

5.2 What is bundling?
A technique that works well with minification is bundling. You might find that your
web pages contain references to many CSS and JavaScript files. While this makes
our lives easier as we’re developing our websites, having more than one CSS or
JavaScript file once the code goes into production isn’t always ideal. More file refer-
ences mean more HTTP requests, and in our quest to improve the overall speed of a
website, we need to reduce the number of requests that a web page makes. The eas-
iest thing to do is to combine all of the JavaScript into one file, and combine all of
the CSS into another file. This technique is known as bundling. If you had four
JavaScript files before bundling, you would have had four HTTP requests. If the Java-
Script files are bundled, you’ll only have one HTTP request, which will speed up
your website considerably!

 In a standard web page, each component is requested separately by the browser
and returned by the server. Once the code reaches the browser, it doesn’t care if it’s
neatly formatted and split into a logical order. The browser will execute the code
regardless and by bundling the files we’re making it a lot quicker for the browser to
receive the code that it needs to execute. Bundling is easy to implement and it
seems a waste not to take advantage of this simple technique to speed up your web
pages. Utilizing bundling and minifying together allows you to amplify those savings
even more.

5.3 New bundling and minifying features in ASP.NET 4.5
In this section you’re going to apply bundling and minification to our Surf Store
application. Some great features included in the release of Visual Studio 2012 will
boost and improve your page speed. You’re going to focus on the bundling and
minification features that can be found under the
System.Web.Optimization namespace.

 This namespace allows you to bundle and minify
all of the JavaScript and CSS in the project folder sim-
ply by sending a URL request to a preset virtual folder
path. This code will work in both ASP.NET Web Forms
and ASP.NET MVC, and is included automatically
when you create a project in Visual Studio 2012. As
you can see in figure 5.2, it can be found in the Solu-
tion Explorer under the App_Start folder.

Figure 5.2 The default
BundleConfig.cs is added to an
ASP.NET 4.5 application

64 CHAPTER 5 Minifying and bundling static files

NOTE It should be noted that if you choose an empty ASP.NET MVC project tem-
plate, you won’t find this class in your project. It is the simplest type of ASP.NET
project and it doesn’t contain the full set of classes that you might need.

This BundleConfig class contains code that allows you to create Script and Style bun-
dles that will bundle and minify the files. You’re going to run through an example in
both ASP.NET MVC and Web Forms, but first it’s important to understand how each
request is handled by ASP.NET.

 In order to create a Script bundle, you’ll need to instantiate it by referencing a vir-
tual path to the files that you want to bundle. The following listing contains code that
you’ll need to implement or replace in the RegisterBundles() method of the
BundleConfig class.

public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new StyleBundle("~/Styles/Css").Include(
 "~/Content/Css/bootstrap.css",
 "~/Content/Css/bootstrap-responsive.css"
));

 bundles.Add(new ScriptBundle("~/Scripts/Js").Include(
 "~/Scripts/bootstrap-alert.js",
 "~/Scripts/jquery-1.7.2.js"
));

 }

The first virtual path referenced in the ScriptBundle is a reference to a file that
doesn’t exist and can therefore be anything. In this case, I have pointed it to “~/
Styles/Css”. The code will then service any requests to the path provided. For exam-
ple, if we want to apply this to CSS, we request:

<link href="/Styles/Css" rel="stylesheet">

As the website compiles and runs for the first time, ASP.NET will search the directory
shown in the previous listing, and it will bundle and minify all the CSS files it finds.
When the virtual directory for the bundle is requested, it will send back a single HTTP
response with all of the CSS combined and minified together. The same piece of code
can be applied to all JavaScript files in a directory by simply changing the path to:

<script src="/Scripts/Js" type="text/javascript"></script>

By referencing the files, ASP.NET 4.5 will generate a reference to the bundled and mini-
fied CSS and JavaScript files in the respective directories. For example, instead of seeing
two CSS file references in the HTML, we now see only one combined file to give us only
one HTTP request. Figure 5.3 shows the data that is inside the newly combined file.

 The code in figure 5.3 has been word wrapped and cut short to make it easier to
read, but you can see there are no spaces and the code is pretty difficult to read. Visual

Listing 5.5 Creating Script and Style bundles

A Style bundle
that minifies
and bundles
two CSS files

A Script bundle that
minifies and bundles

two JavaScript files

65New bundling and minifying features in ASP.NET 4.5
Studio has taken care of the hard work for us, and it only took a matter of minutes to
implement this change. If you mistakenly specify a path of a script file or CSS file that
doesn’t exist, the framework will gracefully handle it for you and not throw any errors.
You won’t get any runtime exceptions and the framework will continue to bundle and
minify the rest of the files.

 The great thing about this new feature is that you don’t need to run any tools or
manually minify or bundle these files—it happens automatically when you run your
application. You’re also in total control as you can switch it on and off as you need it.
This quick change easily handles bundling and minification for you and it’s definitely
a step in the right direction.

NOTE This optimization will only occur under Release mode. You may notice
that the files you’ve requested are not being bundled while you’re develop-
ing. By default, bundling is automatically disabled under Debug mode to
make life easier for the developer to read and update the code. Once you
compile your application under Release mode, the optimizations take place
and bundling is enabled. If you need to test this feature while in Debug
mode, you can temporarily override it by setting BundleTable.Enable-
Optimizations = true in your BundleConfig.cs file. This will minify and bun-
dle your files while in Debug mode.

In chapter 4 we covered Expires Headers and how they notify the browser to cache
static resources for a specified duration. Before a web page requests a resource, the
browser first checks its cache to see if it has a resource with a matching URL. This can
sometimes be problematic because as you’re developing and releasing new changes to
your application, your users might have older versions of these files in their browser’s
cache. One option was to force refresh of the cache using file versioning, or file rev-
ving, and this appends a query string onto the end of the filename.

<link type="text/css" rel="stylesheet" href="/Styles/bootstrap.css?v=1.1">

Figure 5.3 A bundled and minified file after applying the new features in the
System.Web.Optimization namespace

66 CHAPTER 5 Minifying and bundling static files
ASP.NET 4.5 automatically adds a hashcode to the query parameter for you.

<link type="text/css" rel="stylesheet" href="/Styles/
bootstrap.css?v=ABnfFdbAnRuas7H">

If you updated the contents of one of the files and they are bundled using the new
optimization feature, a new hashcode will be appended to the end of the filename
automatically. This requires no extra code and is simply handled for you.

 As long as the contents of the bundle don’t change, the ASP.NET application will
request the bundle using this hashcode. If any file in the bundle changes, the ASP.NET
optimization framework will generate a new hashcode, guaranteeing that browser
requests for the bundle will get the latest bundle and force a refresh of the cache.
Bundles also set the HTTP Expires header to expire one year from when the bundle is
created. This means you’ll automatically get the benefits of HTTP caching when creat-
ing your bundles.

5.4 Utilizing bundling in ASP.NET MVC
You’ve learned a bit about the process of bundling in Visual Studio 2012, and now it’s
time to dive into specific coding examples. This section covers the steps that you’ll
need to perform in order to enable bundling in your ASP.NET MVC web application.
You’ll be using the Surf Store application as a reference for this example.

 When you create an MVC 4 project in Visual Studio 2012, you’ll be presented with
a screen similar to the image in figure 5.4 which shows the available project templates.

 Once you’ve chosen your project template, a BundleConfig.cs file will appear in
your App_Start folder of your project. As already mentioned, this can be used to set
the Script and Style bundles and their associated paths.

 The following listing shows how a default Global.asax file will look when it contains
a reference to the BundleConfig class.

Figure 5.4 Creating a new MVC 4
project in Visual Studio 2012

67Utilizing bundling in ASP.NET MVC

Add
o

bu

Y
re
Sc
b

SS
 in
ce

protected void Application_Start()
{
 AreaRegistration.RegisterAllAreas();

 WebApiConfig.Register(GlobalConfiguration.Configuration);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

The Global.asax file will register the bundles that you’re about to set up. The next list-
ing contains the code needed to set up your bundles in the BundleConfig class.

public class BundleConfig
{
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new ScriptBundle("~/Scripts/Js").Include(
 "~/Scripts/bootstrap-alert.js",
 "~/Scripts/jquery-1.7.2.js"
));

 bundles.Add(new StyleBundle("~/Styles/Css").Include(
 "~/Content/Css/bootstrap.css",
 "~/Content/Css/bootstrap-responsive.css"
));
 }
}

The previous listing shows how the different bundles in an application can be set up.
You’re able to add multiple bundles to the BundleConfig class, then call them by their
virtual path. Finally, you need to add these bundles and their virtual paths to the Lay-
out view. Navigate to the _Layout.cshtml master view file in your Solution Explorer, as
shown in figure 5.5.

You’re using the JavaScript and CSS file references from listing 5.7. Open the view and
reference the JavaScript and CSS files using the default bundles. Two new HTML help-
ers have been introduced in the ASP.NET 4.5 framework: @Styles and @Scripts. Both,
as shown in the next listing, can be used as an easy way to render the full HTML you
need to reference your scripts and styles.

Listing 5.6 The Global.asax file

Listing 5.7 The BundleConfig class for the SurfStore application

References the
bundles you’ll
set up in the
BundleConfig
class in the
App_Start folder.

s a new list
f JavaScript
files to the

ndles in the
application.
ou can then
ference the
ript bundle
y its virtual

path: “~/
Scripts/Js”.

Adds a new list of C
files to the bundles
the application. On
this is in place, you
can reference the
Style bundle by its
virtual path: “~/
Styles/Css”.

Figure 5.5 The Layout view in
an MVC project

68 CHAPTER 5 Minifying and bundling static files

The
Ja
pa
th

HTM

bu
m

Ja
file

d

<!DOCTYPE html>
<html lang="en">
<head>
 <asp:ContentPlaceHolder runat="server" ID="HeadContent">
 <meta charset="utf-8">
 <title>Surf Store Application</title>
 <link rel="shortcut icon"
href="@Url.Content("~/Content/Images/favicon.ico")" />
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <meta name="description" content="">
 <meta name="author" content="">
 @System.Web.Optimization.Styles.Render("~/Styles/Css")
 @System.Web.Optimization.Scripts.Render ("~/Scripts/js")

When the application is compiled and run, the HTML helpers in the previous listing
will produce HTML similar to that in figure 5.6.

 The code in figure 5.6 will bundle and minify all the CSS and JavaScript files in their
respective directories. Notice the hashtag appended to the end of the filename. This
hashtag is dynamic and will change only when the contents of the file change. By appending
a different hashtag to the filename each time the contents change, you’re effectively ensur-
ing that your users will receive a fresh copy of the contents each time they visit your website.

 If you run the page against the developer tools in Internet Explorer, you can
immediately see the differences. As shown in figure 5.7, the page requested four static
files previously, which meant four HTTP requests.

Listing 5.8 _Layout.cshtml with bundling and minification applied

The updated CSS path using
the Styles HTML helper.

This will bundle and
minify all CSS files

in this directory.
updated
vaScript
th using
e Scripts
L helper.
This will
ndle and

inify all
vaScript
s in this
irectory.

Figure 5.6 The new HTML helpers automatically produce the HTML
required for your bundles.

Figure 5.7 CSS and JavaScript before bundling and minification in ASP.NET MVC. Notice
that there are four HTTP requests: two for the CSS and two for the JavaScript.

69Utilizing bundling in ASP.NET Web Forms

Re
the

that
set u
Bund

cla
the Ap
After applying the changes to the Layout view, the HTTP requests have been reduced and
you can see the virtual paths that you referenced in the BundleConfig class in figure 5.8.

 Applying bundling to your ASP.NET MVC application has been made really easy
with the new features in Visual Studio 2012. The new HTML helpers work with both
the Razor and ASPX view engines. They are easy to use and don’t require major
changes to your existing development workflow.

5.5 Utilizing bundling in ASP.NET Web Forms
In the .NET 4.5 framework, ASP.NET MVC and ASP.NET Web Forms benefit from the
System.Web.Optimization namespace. Applying bundling and minification in ASP.NET
Web Forms is an easy process that is handled when you create a Web Forms project in
Visual Studio 2012. You’ll notice in figure 5.9 that a BundleConfig.cs file has been cre-
ated under the App_Start folder.

 The Global.asax class file in your Solution Explorer will contain the following lines
under the Application_Start method. The listing shows how a default Global.asax
file will look when it contains a reference to BundleConfig.cs class file.

public class Global : HttpApplication
{
 void Application_Start(object sender, EventArgs e)
 {
 // Code that runs on application startup
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 BundleTable.EnableOptimizations = true;
 }
}

Listing 5.9 The Global.asax file

Figure 5.8 CSS and JavaScript after bundling and minification in ASP.NET MVC. There are
only two requests for the CSS and the JavaScript.

Figure 5.9 The default BundleConfig.cs that
is added to an ASP.NET Web Forms application
upon creation in Visual Studio 2012

ferences
 bundles
 you will
p in the
leConfig
ss under
p_Start
folder.

If you need to test
the bundling and
minifying features
while in Debug
mode, simply add
this line to force
the enabling of
the optimizations.

70 CHAPTER 5 Minifying and bundling static files

e

e

:

SS
in
 can
tyle
l
”.
The Global.asax file in the listing will register the bundles you’re about to set up. It
will do so as the application starts for the first time, so they’re ready to use as and
when you need them. The following listing shows how to set up the correct bundles in
the BundleConfig class.

public class BundleConfig
{
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new ScriptBundle("~/Scripts/Js").Include(
 "~/Scripts/bootstrap-alert.js",
 "~/Scripts/jquery-1.7.2.js"
));

 bundles.Add(new StyleBundle("~/Styles/Css").Include(
 "~/Content/Css/bootstrap.css",
 "~/Content/Css/bootstrap-responsive.css"
));
 }
}

The listing contains the code that will initialize the bundles for the JavaScript and CSS
files. By using the BundleConfig class, you’re able to specify which files will get mini-
fied and bundled when the application starts. Next, navigate to the Site.Master file in
the Solution Explorer (figure 5.10).

Open the master page and reference the JavaScript and CSS files using the default
bundles. Two new HTML helpers have been introduced in the ASP.NET 4.5 framework:
Styles and Scripts. They can both be used to render the full HTML that you need to
reference your scripts and styles. This listing contains the code you need to apply to the
Surf Store application.

<!DOCTYPE html>
<html lang="en">
<head>
 <asp:ContentPlaceHolder runat="server" ID="HeadContent">
 <meta charset="utf-8">
 <title>Surf Store Application</title>

Listing 5.10 The BundleConfig class

Listing 5.11 Site.Master page with bundling and minification applied

Adds a new list of
JavaScript files to
the bundles in th
application. You
can then referenc
the Script bundle
by its virtual path
“~/Scripts/Js”.

Adds a new list of C
files to the bundles
the application. You
then reference the S
bundle by its virtua
path: “~/Styles/Css

Figure 5.10 The Site.Master file in
an ASP.NET Web Forms application

71Utilizing bundling in ASP.NET Web Forms

Upda
path us

Style
helpe

applicati
Release
it will
and m

CSS files
dir

.

 <link rel="shortcut icon" href="<%= "Images/favicon.ico" %>" />
 <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <meta name="description" content="">
 <meta name="author" content="">
 <%= Styles.Render("~/Styles/Css")%>
 <%= Scripts.Render("~/Scripts/Js")%>

The Scripts and Styles HTML helpers will minify and bundle the code when you’re in
Release mode. When you’re in Debug mode, the helpers will simply return all of the
JavaScript and CSS in individual HTML tags. When the application is compiled and run in
Release mode, the code in listing 5.11 will produce HTML similar to that in figure 5.11.

 The code in listing 5.10 will bundle and minify all the CSS and JavaScript files in the
respective directories. Notice the hashtag that has been appended to the end of the file-
name. This hashtag will be dynamic and only change when the contents of the file change.
By appending a different hashtag to the filename each time the contents change, you’re
effectively ensuring that your users will receive a fresh copy of the contents.

 If you run the application and check the Network Traffic tab in Internet Explorer’s
developer tools (figure 5.12), you can immediately see the differences. The page previ-
ously requested four static files, which meant four HTTP requests.

 After applying the changes to the Site.Master page, the HTTP requests have been
reduced and you can see the virtual paths that you referenced in the BundleConfig class
(figure 5.13).

ted CSS
ing the
s HTML
r. If the
on is in
 mode,

 bundle
inify all
 in this
ectory.

The updated JavaScript path using the
Scripts HTML helper. If the application
is in Release mode, it will bundle and
minify all JavaScript files in this directory

Figure 5.11 The new HTML helpers automatically produce the HTML
required for your bundles

Figure 5.12 CSS and JavaScript before bundling and minification in ASP.NET Web Forms.
Notice that there are four HTTP requests: two for the CSS and two for the JavaScript.

72 CHAPTER 5 Minifying and bundling static files
Adding these changes to the sample Surf Store application has been quick and easy.
Although you’ve run through standard implementations using bundling support in
ASP.NET 4.5, I really like that this feature supports a rich extensibility API that enables
you to customize the bundling settings to your personal needs.

5.6 The results
It’s worth mentioning the steps you’ve taken this far to improve the page speed of the
Surf Store application. As of now, you’ve added:

■ Compression (Gzip): Chapter 3
■ HTTP caching (HTTP Expires): Chapter 4
■ Output caching: Chapter 4
■ Minification and bundling: Chapter 5

All of these features can and should be applied together to achieve the maximum
effect on the improvement of your overall page load time. Is it worth adding compres-
sion if you’re minifying the file or vice versa? Definitely, because the files can still be
compressed further after you’ve minified them.

 By adding HTTP caching on top of this, you’re also reducing the number of HTTP
requests that the user’s browser needs to make when visiting your website. All of these
techniques are stacking up on one another to produce a faster, leaner, and more effi-
cient website with extremely fast load times (figure 5.14).

Figure 5.13 CSS and JavaScript after bundling and minification in ASP.NET Web Forms.
There are only two requests for the CSS and the JavaScript.

Figure 5.14 The techniques
that you’ve learned so far are
all stacking up to build a
high-speed, efficient website.

73The results
Minifying the CSS and JavaScript in the Surf Store application has been an easy task
using the new features built into ASP.NET 4.5. You were able to minify and bundle mul-
tiple files together, which had a big impact on your overall page speed. The Surf Store
application’s Google PageSpeed score was 89 at the end of chapter 4. If we test the
Surf Store application after minification and bundling (figure 5.15) you can see even
more improvement. The PageSpeed score has jumped to 93.

 Our minification and bundling efforts show good results when you run the website
against the Yahoo! YSlow tool (figure 5.16), as well. Our performance went from a
score of 90 to 91 and bumped us up to a grade A!

 The changes have significantly improved our page weight and the number of
HTTP requests. Figure 5.17 shows a before and after result.

 You’re slowly reducing the number of HTTP requests that the sample Surf Store
application needs to make. These changes have not affected the overall integrity
of the code, but have boosted and improved the performance and load times of
the application.

Figure 5.15 The Google PageSpeed score after applying minification
and bundling

Figure 5.16 The Yahoo!
YSlow score after applying
bundling and minification

74 CHAPTER 5 Minifying and bundling static files
In figure 5.17, the chart on the left shows a total of 13 HTTP requests and a total page
weight of 1049.8K. The chart on the right, after you’ve applied minification and bun-
dling, tells a different story. You’ve reduced the number of HTTP requests to 11 and
reduced the total page weight to 835.3K. This is pretty impressive and improvements
were all made with the built-in support that ASP.NET 4.5 offers. Imagine what these
changes could do for your web application!

5.7 Summary
In this chapter you’ve learned the all-important aspects of minifying and bundling
your CSS and JavaScript files. In doing so, you’ve drastically reduced the size of the
requested files. You’ve also reduced the number of requests each web page needs to
make, giving you a two-way win.

 There are new optimization features in ASP.NET 4.5 that are available with out-of-
the-box support in Visual Studio 2012. They make it easy for you as an ASP.NET devel-
oper to apply minification and bundling to your web application.

 It may seem like such a subtle difference when using the techniques that we cov-
ered in this chapter, but minification and bundling can seriously improve your page
load times and save on the number of bytes your users need to download. It takes no
time at all to apply it, and your users will definitely benefit from this change. Over the
past few chapters, you’ve been building a basic foundation of simple techniques that
are beginning to add up to a substantial toolkit. Together, these optimization tech-
niques form the basis of a highly optimized website. In the next chapter, we begin to
dive into HTML optimization techniques and look at how you can harness the power
of HTML5 to improve the performance of your web applications.

Figure 5.17 The overall page weight and number of HTTP requests before and after minification
and bundling

HTML optimization tips
This chapter contains a collection of HTML best practices and tips that will improve
the performance of your website. Some tips may seem like small changes, but
they’ll go a long way toward improving the overall load time and responsiveness of
your website. We’ll cover the optimal position in the HTML to place CSS and
JavaScript, as well as the order in which they should appear.

 You’ll learn a few HTML5 techniques and how you can apply these techniques to
your application to achieve quicker load times. This chapter builds on the Surf
Store application that you’ve been using thus far, and applies HTML5 techniques in
different scenarios.

This chapter covers
■ Positioning CSS and JavaScript in a web page

for best performance
■ How CSS and JavaScript placement affects

rendering
■ The impact of duplicate scripts
■ HTML5 optimization techniques
75

76 CHAPTER 6 HTML optimization tips

the
al,
ks
of
6.1 Where to position CSS and JavaScript in a web page to
achieve the best performance
When you start building a new website, you may not be concerned with the order or
location of the style sheets on your web page. However, their order and location play
an important role in the way a browser renders a web page.

6.1.1 CSS
The position of CSS in an HTML document has less to do with download times, and
more to do with how the browser reacts and renders the page. It’s all about perceived
speed for the user!

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Surf Store Application</title>
 <link rel="shortcut icon" href="Images/favicon.ico" />
 <meta name="description" content="">
 <meta name="author" content="">
 <script src="Scripts/jquery-1.7.2.js"></script>
</head>
<body>
 <link href="Styles/bootstrap.css" rel="stylesheet" />
 <link href="Styles/bootstrap-responsive.css" rel="stylesheet" />
</body>
</html>

In a typical HTML web page the JavaScript is located in the <head> tag of the docu-
ment and the CSS is in the body of the page. Placing CSS at the bottom of a web page
is not the optimal position because browsers block the rendering of a web page until
all external style sheets have been downloaded. This means that if your style sheet is
located at the bottom of a web page, it will block everything else from loading and you
might see a blank white screen for a short while. This is not good. Figure 6.1 shows
how the location of CSS on a web page affects the way a page renders.

 It may seem as if the waterfall chart in figure 6.1 represents the best-case scenario
for page rendering, but nothing will be visible on the web page until after the CSS has
been downloaded and parsed. Putting the CSS near the bottom of the document pre-
vents progressive rendering in many browsers. Progressive rendering means the web page
begins to appear and the text can be read even before all the text or images have been
completely downloaded. Most browsers block rendering to avoid having to redraw ele-
ments of the page if the CSS changes. Some browsers will even leave the user with a
blank white page while they are waiting.

 In fact, the best place to put your style sheets is in the document <head> tag. If style
sheets are downloaded and parsed first, the browser is able to render the page pro-
gressively instead of blocking the rendering until the CSS has finished loading. By

Listing 6.1 Style Sheets located at the bottom of the page

The JavaScript is
located in the
<head> tag of
the document.

CSS located at
the bottom of
page is not ide
because it bloc
the rendering
a web page.

77Where to position CSS and JavaScript in a web page to achieve the best performance
positioning the CSS in the document <head> tag, you’re also allowing the browser to
begin displaying whatever content it has as soon as possible.

 Listing 6.2 shows the CSS located in the document <head> tag in the Surf Store
application. The same principle applies to inline style blocks, which can cause reflows
and shifting of content. Reflow is the name of the web browser process for recalculat-
ing the positions and geometries of elements in a web page. Reflows block the browser
while they try to recalculate the position of elements on a web page. The following list-
ing is a web page from the Surf Store application, and you can see the small snippet of
inline CSS that is necessary to include a visual header on the page. This inline style tag
needs to reside in the document head for the best performance.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Sample web page</title>
<link href="Styles/bootstrap.css" rel="stylesheet" />
<link href="Styles/bootstrap-responsive.css" rel="stylesheet" />
<style type="text/css">
body
{
 padding-top: 60px;
 padding-bottom: 40px;
}
.sidebar-nav
{
 padding: 9px 0;
}
</style>
</head>

Figure 6.2 shows the CSS positioned at the top of the HTML document. You may not
notice faster download times by placing the CSS at the top of your web page, but

Listing 6.2 Style sheets located at the top of the page

Figure 6.1 A simulated waterfall chart
showing the CSS at the bottom of the
HTML document

CSS positioned
at the top of
the page is the
optimum
position

Inline style
block

78 CHAPTER 6 HTML optimization tips
this will at least allow the user to see something on the page while the rest of the
page renders.

6.1.2 JavaScript

The location and order of JavaScript can also have a positive and negative effect on
the way a page is rendered. If CSS needs to be in the document head, you might pre-
sume that your JavaScript should go there too. In fact, the best place for JavaScript is
at the bottom of a web page because JavaScript blocks the browser’s ability to down-
load components in parallel. In other words, it blocks progressive rendering for all
content in the web page that’s placed after the JavaScript. If you place the JavaScript at
the bottom of a web page, the content above the script will be rendered faster.

 This may seem like a contradiction. You moved your CSS to the document head
to allow progressive rendering but you place your JavaScript at the bottom of the
web page to allow progressive rendering. Why? So the JavaScript is guaranteed to be
executed in the proper order. For example, if code that required the jQuery library
is executed before the jQuery library is actually downloaded, all sorts of errors
would occur.

 Moving the JavaScript to the bottom of a web page means there is more content
above the script, and that content will be rendered sooner rather than later. Browsers
run JavaScript in a single thread, so if a script is executing, the browser might not be
able to start other downloads. If you move the JavaScript to the bottom of the page,
the other downloads on the page are allowed to complete without any blocks. It
appears faster visually, but the download times also reflect a performance improve-
ment. Figure 6.3 shows what a waterfall chart would look like if you placed the
JavaScript at the top of the page versus placing it at the bottom of the page.

 In the top waterfall chart, you can see that the images and all other components
are waiting for the JavaScript to finish downloading before they can start rendering.
This isn’t ideal. The second waterfall chart shows what happens when you move the

Figure 6.2 A waterfall chart
showing the CSS at the top of
the HTML document

79How the order of styles and scripts affects rendering
JavaScript to the bottom of the page. Downloads aren’t blocked, rendering takes
place faster, and the user will be able to see and interact with elements on the page a
lot sooner.

6.2 How the order of styles and scripts affects rendering
You’ve learned the optimal positions for CSS and JavaScript, but the order that these
files are placed in an HTML page is also important. If you place them in the correct
order, you’re making sure the browser can render the page faster and not block the

Figure 6.3 An image showing the differences in the way a page loads depending on
where the JavaScript has been placed in the HTML. Note that the best place is at the
bottom of the page.

80 CHAPTER 6 HTML optimization tips
download of any components while it’s doing so. As mentioned earlier, the browser
will delay rendering any content that follows a script tag until it’s been fully down-
loaded. If you couple this with a browser not rendering a web page until the CSS has
been parsed, the order of your style sheets and JavaScript can have a big impact on
your page load times.

 The next listing contains HTML with four components that need to be down-
loaded so the page will render. I have purposely positioned the JavaScript between the
style sheets to show how this will negatively affect performance.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Sample web page</title>
<link href="Styles/bootstrap.css" rel="stylesheet" />
<script src="Scripts/jquery-1.7.2.js"></script>
<script src="Scripts/bootstrap-alert.js"></script>
<link href="Styles/bootstrap-responsive.css" rel="stylesheet" />
</head>

The waterfall chart now might look something like figure 6.4
 Notice that the second JavaScript file in figure 6.4 will only execute after the first

JavaScript file has been downloaded. This also affects the second CSS file because it
must wait until the second JavaScript file has finished downloading before it executes.
Each component is forcing the next component to wait until the preceding compo-
nent is finished downloading. It’s like being in a bank with only one cashier—you
need to wait until the person in front of you has been assisted and finishes their trans-
action before you can be helped! The next listing contains updated code that shows
JavaScript and CSS files in the correct order in a web page.

<!DOCTYPE html>
<html lang="en">
<head>
<title>The correct order</title>

Listing 6.3 The order of external styles and scripts

Listing 6.4 The correct order for external scripts and styles

The JavaScript files
are located between
the two CSS files.

Figure 6.4 A waterfall chart
showing the effect that placing
JavaScript files between CSS
files can have. The best place
for CSS is in the head of the
HTML document.

81HTML5
<link href="Styles/bootstrap.css" rel="stylesheet" />
<link href="Styles/bootstrap-responsive.css" rel="stylesheet" />
</head>
<body>
<script src="Scripts/jquery-1.7.2.js"></script>
<script src="Scripts/bootstrap-alert.js"></script>

</body>
</html>

Notice I’ve moved the JavaScript to the bottom
of the web page, just before the close of the
<body> tag. I’ve also kept the CSS in the docu-
ment head. With the order of the external style
sheets and scripts optimized, the waterfall chart
for the previous listing might look something
like figure 6.5.

 Browsers run JavaScript in a single thread, so
it’s understandable that while CSS and JavaScript
are being parsed and executed, the browser is
unable to start other downloads. But there’s no
reason the browser can’t start downloading
other resources while the CSS and JavaScript
files are downloading. Now that the order of the JavaScript and CSS has been opti-
mized, you can see in figure 6.5 that more downloads are able to occur in parallel.
The two CSS files are being downloaded in parallel to the first JavaScript file and you
no longer have any downloads blocking the other components on the page. Our bank
now has a few more cashiers and the line isn’t as long!

6.2.1 The impact of duplicate scripts

Duplicate scripts on your web page will not only add extraneous components for the
browser to download, but will also add extra JavaScript for the browser to execute.
Even if you’ve added HTTP caching, redundant JavaScript will still take time to parse
and execute. You may be a diligent developer and think that this will never happen to
you; however it can happen to anyone, especially in a team development environ-
ment. You wouldn’t want all your optimization work to go to waste by having extra
unnecessary JavaScript files in your application! Keep this in mind when reviewing
your HTML.

6.3 HTML5
HTML5 is a hot topic, and web developers everywhere are beginning to embrace it.
HTML5 is the latest generation of HTML, and since the previous version (HTML4),
there have been syntactical changes in the structure of the markup. A few extra APIs
that are accessed via JavaScript have been added to HTML5. The web is constantly
evolving all around us, mobile devices such as tablets and phones are becoming more

The JavaScript files
are located at the
bottom of the page.

Figure 6.5 A waterfall chart showing
the CSS placed in the document head

82 CHAPTER 6 HTML optimization tips
powerful and more aligned with desktop PCs. HTML5 was designed to help us progress
our work in the ever-evolving world of the internet.

 Some optimization techniques available in HTML5 will increase the performance
and speed of your websites. In the next section, you’ll learn some of these techniques.
Although many of them may not improve your PageSpeed or YSlow score, they will
definitely benefit your users.

 In the shift between HTML4 and HTML5, the general structure of the HTML is the
same, but syntactical changes reduce the number of characters you need to include
on the page. Less syntax obviously contributes to the overall improved page load time.
If you have less HTML in the page, the page is a lot lighter and the user is able to
download the request faster.

 In previous versions of HTML you would specify the document type at the top of
the page like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

HTML5 now allows you to set the document type in the following manner:

<!DOCTYPE html>

The same applies when you specify the encoding of your document. Older versions of
HTML would be similar to the following:

<meta http-equiv="content-type" content="text/html; charset=utf-8">

HTML5 now allows you to specify it like so:

<meta charset="utf-8">

These changes might not seem like much, but you’re already starting to remove extra-
neous characters and reduce the overall page weights in your website. Another syntac-
tical change introduced with HTML5 is the ability to exclude type attributes when
you’re referencing resources on your web page. For example, you might have refer-
enced a JavaScript file like this in an older version of HTML:

<script type="text/javascript" src="filename">

However, you no longer need to specify the script type.

<script src="filename">

This can be applied to style sheets and, in fact, all MIME types in your web page. You
can simply exclude the MIME types in the type attribute. Each step toward character
removal means that you’re reducing the size of the HTML page to be loaded.

6.4 A note on HTML5 browser support
Although HTML5 is starting to gain popularity and exposure across the internet, it’s
still in its infancy in terms of overall adoption. You’ve covered a handful of great
HTML5 techniques that can really improve your application’s performance, but you

83A note on HTML5 browser support
should always keep in mind that a lot of browsers don’t yet support some of these
great HTML5 features.

 With the right fallbacks in place, there is no reason why you can’t start using
HTML5 today.

 Modernizr (download at http://modernizr.com/) is a JavaScript library that detects
HTML5 and CSS3 features in a user’s browser. It’s great if you need to quickly and eas-
ily determine the capabilities of a user’s browser, which then allows you to serve them
the appropriate content.

 Chapter 1 covered the performance cycle and the important role it plays when
you’re making changes on your website. While you’re progressing through this chap-
ter, keep the stages of the performance cycle (figure 6.6; repeated from chapter 1)
and where you currently stand in mind. After applying any HTML5 updates to a web-
site, it’s important to monitor any performance changes and monitor how they affect
your users. As a developer, think about your users instead of simply adding HTML5 fea-
tures. What do your analytics statistics look like? How many of your users are using
updated browsers? How long does your JavaScript take to load? These are all impor-
tant questions to ask yourself.

6.4.1 HTML5 asynchronous JavaScript

At the beginning of the chapter you learned about the impact JavaScript has on web
page loading times. JavaScript will block any other downloads on a page, and in some
instances prevent the page from progressively rendering. Many a time you will see a
blank page while a large JavaScript file is being downloaded and parsed, and it’s
because it’s blocking the DOM. However, the clever folks at the W3C thought of a way
to get around this.

Figure 6.6 The performance cycle

http://modernizr.com/

84 CHAPTER 6 HTML optimization tips
 Enter async, an attribute of the script tag, introduced in the HTML5 draft. This
handy little attribute allows you to download JavaScript and execute it asynchronously
without blocking the rendering of elements below it. Think of it as the browser’s abil-
ity to execute the code independently of anything else that’s happening on the page.
The best part is it doesn’t block anything else. You simply need to include async in the
script tag:

<script async src="filename"></script>

In theory, if you have two scripts in a web page and you’re using async, these two
scripts can run at the same time and in parallel.

 Another useful tag attribute is defer. It can be used in conjunction with async and
has been supported in browsers for a while now. In order to use it, add the attribute to
the script tag:

<script defer src="filename"></script>

The defer attribute is similar to async in most ways. The difference is when each
script is executed. Each async script executes after it has finished downloading, which
means it is not executed in the order in which it occurs in the page. The defer scripts
are guaranteed to be executed in the order in which they occur in the page. The fol-
lowing listing shows an example of these tags being used in a web page.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Async JavaScript</title>
<link href="Styles/Site.css" rel="stylesheet" />
 </head>
 <body>

 <script async src="Scripts/tracking.js"></script>
 </body>
 </html>

The async attribute is included in the JavaScript tag. Figure 6.7 shows a waterfall chart
for a web page, like that in the previous listing, which has script tags decorated with
the async attribute. Notice that the JavaScript will still get executed in any order that the
browser sees fit, even if the JavaScript appears at the bottom of the page. The async
attribute allows the browser to parse the HTML and decide when and how to down-
load and execute the JavaScript. This has also occurred independently of the other
downloads on the page.

 There are still some things you’ll need to take into account when you’re using
async and defer. The scripts aren’t guaranteed to run in the order they appear in

Listing 6.5 An example of asynchronous JavaScript in action

The async
attribute
added to the
JavaScript tag

85A note on HTML5 browser support
the document, which is their default behavior when async isn’t present. You’ll
need to exercise caution when using these two attributes because they might lead
to code dependency issues. For instance, if you use jQuery or any other JavaScript
library on your web page that’s used by other scripts on the same page, you might
find that the script that’s dependent on the library is run first. This can cause the
scripts to fail. Figure 6.8 represents a typical JavaScript error you might come across
in this situation.

 Depending on your HTML, the usage of async or defer can bring a boost to the
JavaScript performance of a web page. It can get a little tricky when the JavaScript on
the web page has dependencies, so keep that in mind.

6.4.2 HTML5 Web Workers

JavaScript runs in a single-threaded environment, so multiple scripts can’t run at the
same time. It also means expensive, long-running tasks may block UI rendering. It
would be a whole lot easier if you could write JavaScript asynchronous tasks that are
both fire-and-forget and won’t block the UI of a web page.

Figure 6.7 A waterfall chart for
JavaScript that is run using the
HTML5 async attribute

Figure 6.8 A JavaScript error that
occurred as a result of the async
attribute and a code dependency

86 CHAPTER 6 HTML optimization tips
Fortunately, there is an API that allows you to run scripts in the background, isolated
from the web page. This API is known as Web Workers. Workers use thread-like mes-
saging and they are perfect for keeping your UI fresh, snappy, and responsive. What is
the difference between simply decorating your script tag with the async attribute and
using HTML5 Web Workers? HTML5 Web Workers actually run in a thread that is
owned by the browser. I like to think of HTML5 Web Workers as Thread or ThreadPool
classes from .NET’s System.Threading namespace for the front end.

 Thankfully, HTML5 Web Workers allow you to run tasks in parallel, and this makes
full use of multiprocessor computers. Figure 6.9 illustrates how HTML5 Web Workers
run in parallel to the UI thread, allowing the main browser to continue as normal, not
blocked by the JavaScript.

 Web Workers are perfect for fire-and-forget tasks. If you have a long-running task
that you want to run in the background without affecting the main page, using a Web
Worker would be ideal.

 Using Web Workers can also be useful if you need to make sure a snippet of script
executes even if the user navigates away from the web page. For example, if a user on
your site navigates to another web page, you might find that a long-running script
can’t finish executing and you could lose your JavaScript objects. If you use a Web
Worker, script execution happens in another thread, so you can guarantee that it will
execute properly.

 Next you’re going to implement a basic, long-running AJAX example in the Surf
Store application. As you progress through this example, remember that this Web
Workers exercise is merely intended to give you a better understanding of Web Work-
ers. The example you’re using is not a real-world scenario, and you’ll need to think
about how to apply this to your application first!

6.4.3 Browser support for HTML5 Web Workers

You’re about to run code samples in both MVC and Web Forms. Surprisingly, there is a
decent amount of support for Web Workers, but some of the major browsers (including

Figure 6.9 Web Workers are
able to run in parallel to the
main browser thread.

87A note on HTML5 browser support

r
older versions of Internet Explorer) are still playing a bit of catch-up. Firefox,
Chrome, Safari, Opera, and Internet Explorer 10 all offer support for Web Workers.
For more information, caniuse.com is a useful website for determining which brows-
ers support Web Workers and any other HTML5 features. If the browser you’re target-
ing doesn’t yet fully support Web Workers, you could fall back to using traditional
methods for executing long-running scripts.

6.4.4 HTML5 Web Workers in an ASP.NET MVC application

Remember that the original sample code for each application can be downloaded at
https://github.com/deanhume/FastASPNetWebsites. Once it is in place, open the
MVC project in the chapter 6 source code under the folder HTML5 Web Workers. In
your Solution Explorer, navigate to the Layout View. Add the code from this listing.

<script async src="/Scripts/jquery-1.7.2.js"></script>
<script async src="/Scripts/bootstrap-alert.js"></script>
<!-- HTML5 Web Worker -->
<script>
 if (typeof window.Worker === "function") {
 var worker = new Worker("/Scripts/Worker.js");
 worker.onmessage = function (event) {
 alert(event.data);
 };
 }
</script>
</body>
</html>

You added the JavaScript just before the closing
<body> tag, because this code will run asynchro-
nously but you don’t want to block other component
downloads on the page.

 Remember that the order of scripts and styles
can affect page rendering! Next, add a new Java-
Script file called Worker.js to your Scripts folder in
the project. You’ll use this Worker.js file to create
the code the HTML5 Web Worker will execute. Fig-
ure 6.10 shows the location of the newly created
Worker.js file in the Surf Store application for
this chapter.

 Inside the JavaScript file (Worker.js), add the
code in the following listing.

Listing 6.6 Using Web Workers in a Layout View

Check for browser
support first

Creating a Web Worke
and referencing the
JavaScript file that
you want to run

In this case, you’re displaying
an alert on the screen, but
you would handle this more
effectively in real life.

Figure 6.10 Adding a new
JavaScript file to the Scripts folder
in an ASP.NET MVC application

https://github.com/deanhume/FastASPNetWebsites

88 CHAPTER 6 HTML optimization tips

var request = new XMLHttpRequest();
request.open('POST', '/statistics/update', false);
request.send(null);

if (request.status == 200) {
 postMessage(request.responseText);
}

The Worker.js file contains code that will make an AJAX request to a controller in the
MVC application. You’re going to update a set of statistics on the server with this code
and it will return a message to the main calling script once the code has completed.
You’re not passing any parameters in this example, but these could just as easily be
added onto the request. Web Workers use a method called postMessage to return a
result to the thread that called it. Whatever you return in this postMessage will be
returned to the original thread. Next, you’ll need to add the controller that’s going to
simulate intensive server-side code.

 Add this new controller to the application and call it StatisticsController. This
controller will contain the code that will execute and update the statistics on the
server. The code in listing 6.8 is simple, but it’s used to simulate what could happen if
the server needed to perform intensive calculations or long-running database calls.
In the case of the code in the example listing, it’s updating the statistics for the web-
site in the database which is an expensive call if done regularly. If you fire up the appli-
cation, you’ll notice that you can continue using the web page and nothing has
blocked the UI. You’ll receive an alert message once the operation that was running in
the background has completed.

public ActionResult Update()
{
 // This takes 5 seconds to execute
 Thread.Sleep();

 return Json("Success", JsonRequestBehavior.AllowGet);
}

In figure 6.11, the image of the Network tab on the developer tools shows us a simi-
lar result.

 In the Network tab, Worker.js is shown to take only 48 milliseconds. However, it
actually took 5 seconds. It only took 48 milliseconds for the browser to parse the initial
JavaScript and hand it off to run in parallel. The Web Worker allowed it to run in the
background and it had no effect on the page’s UI. Through the clever use of Java-
Script threads this brilliant HTML5 feature has drastically sped up the load time and
responsiveness of the web page.

Listing 6.7 The JavaScript file of a Web Worker

Listing 6.8 The JavaScript file of a Web Worker

Make a POST HTTP request
to the Update action on the
Statistics Controller

Return a message
to the calling script

The code is making the application
wait in order to simulate a long-
running process.

Return a success message
to the Worker.js script

89A note on HTML5 browser support

r

6.4.5 Web Workers in an ASP.NET Web Forms application

Adding HTML5 Web Workers to your ASP.NET Web Forms application is easy. In fact,
adding Web Workers to even the most simple HTML page can be done in no time. In
this example, you’re going to see how a Web Worker makes a call to an AJAX-enabled
WCF service.

 First, open the Web Forms project in the chapter 6 source code under the folder
HTML5 Web Workers. In your Solution Explorer, navigate to the Site.Master page.
Add the code in this listing outside of the <body> tag.

</body>
<script async src="/Scripts/jquery-1.7.2.js"></script>
<script async src="/Scripts/bootstrap-alert.js"></script>
<!-- HTML5 Web Worker -->
<script>
 if (typeof window.Worker === "function") {
 var worker = new Worker("/Scripts/Worker.js");
 worker.onmessage = function (event) {
 alert(event.data);
 };
 }
</script>
</html>

We added the JavaScript outside of the <body> tag because even though this code will run
asynchronously, we still don’t want to block other component downloads on the page.
Remember that the order of scripts and styles can affect the page rendering! Next, add a
new JavaScript file called Worker.js to your Scripts folder in the project. Figure 6.12 shows
where the newly created Worker.js file is located in the Surf Store application.

 Inside the JavaScript file, add the following code:

Listing 6.9 Using Web Workers in a Master page

Figure 6.11 The Web Worker in the Network tab in an ASP.NET MVC application

Check for browser
support first

Creating a new Worke
and referencing the
JavaScript file that you
want to run

In this case, an alert is displayed
on the screen, but you would
handle this more effectively.

90 CHAPTER 6 HTML optimization tips

var request = new XMLHttpRequest();
request.open('POST', '/statistics.svc/update', false);
request.send(null);

if (request.status == 200) {
 postMessage(request.responseText);
 }

The Worker.js file contains code that is going to make
a request to an AJAX-enabled WCF service in the Web
Forms application. Once it’s completed, it will return
a message to the main calling script. In this example,
you’re not passing any parameters through, but these
could easily be added onto the request. Web Workers
use postMessage to return a result to the calling
thread. Whatever you return in this postMessage will
be returned to the original thread. Next, you need to
add the AJAX-enabled WCF service that is going to
simulate long-running server-side code.

 Add this new AJAX-enabled WCF service, shown in
the following listing, to the application and call it
Statistics. This WCF service will contain the code
that will execute and update the statistics on the server.

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class Statistics
{
 [OperationContract]
 public string Update()
 {
 // Do something long running here
 Thread.Sleep(5000);

 return "Success";
 }
}

This code is simple, but it is used to simulate what could happen if the server needed
to perform intensive calculations or long-running database calls. If you fire up the
application, you’ll notice that you can continue using the web page and nothing has
blocked the UI. You’ll receive an alert message once the operation that was running
in the background has completed. The Network tab in browser developer tools (fig-
ure 6.13) shows us a similar result.

Listing 6.10 The JavaScript file of a Web Worker

Listing 6.11 The server-side code of an AJAX-enabled WCF service

Make a POST HTTP request
to the update action on the
Statistics Controller

Return a message to
the calling script

Figure 6.12 Adding a new
JavaScript file to the Scripts folder in
an ASP.NET Web Forms application

The code is making the
application wait in
order to simulate a
long-running process.

Return a success message
to the Worker.js script

91HTML5 application cache
In the Network tab, the Worker.js is shown to take only 48 milliseconds. However, it
actually took 5 seconds. This is because it took only 48 milliseconds for the browser to
parse the JavaScript and pass it off to run in parallel. The Web Worker allowed it to run
in the background and had no effect on the page’s UI. Through the clever use of
JavaScript threads this brilliant HTML5 feature has drastically sped up the load time
and responsiveness of the web page.

6.5 HTML5 application cache
Another great feature introduced in HTML5 is the application cache which allows you
to run your web application offline. If the application cache is utilized properly,
you won’t need a network connection to browse the pages in a website. This feature may
not be applicable to every application that you write, but you can harness it to improve
the speed and load times of certain pages in a web application. This technique does
seem like a great concept—but how does it actually help you improve the speed of an
application? The user could access all the resources that they need from the application
cache instead of the server and, in turn, the page would load a lot faster.

 A web browser that uses the HTML5 application cache to implement offline
applications will read a list of URLs from the manifest file, download the resources,
cache them locally, and automatically keep the local copies up-to-date as they
change. Figure 6.14 represents the flow of events that take place in the HTML5 appli-
cation cache.

 The HTML5 application cache enables a website to function without a network
connection, and it can be extremely useful when a user on a mobile connection sud-
denly loses signal. This feature feels like something you should have been able to do

Figure 6.13 The Web Worker being downloaded and executed in an ASP.NET Web
Forms application

Figure 6.14 The HTML5 application cache workflow

92 CHAPTER 6 HTML optimization tips
for years with web pages, and now it’s finally been implemented as part of HTML5.
Another advantage of using the application cache is it acts like the HTTP caching that
you learned about in chapter 4. If used correctly, the browser only needs to download
new content instead of fetching resources it already has.

 Using the HTML5 application cache in an ASP.NET application is an easy process.
Each time you use the application cache, you will need to reference a cache manifest
file. This file is a simple text file that lists the resources the browser should cache for
offline access. The manifest file can be located anywhere on your web server and con-
tains a list of the things you’ll want to store in the application cache.

 In order to know which files to cache, the HTML5 application cache will look
inside the manifest file. This file will contain a simple list of the files that you want to
cache. A typical manifest may look similar to the output in this listing.

CACHE MANIFEST
index.html
stylesheet.css
images/logo.png
scripts/main.js

You could always link to a static manifest file on your server, but I quite like to use the
power of ASP.NET to return a dynamic manifest file. A dynamic file gives you much
more control over the individual files you want to cache, and also allows for tighter
control of updating the cache. You’re going to look at an example in both ASP.NET
Web Forms and ASP.NET MVC that easily allows you to harness the power of this great
HTML5 feature. By using a dynamic manifest file, the browser will continue to use the
cached version of the resources until the manifest file has changed or been updated.

 A manifest file is made up of three sections: CACHE, NETWORK, and FALLBACK.
Each section has a specific purpose:

■ CACHE—This section contains the list of files to cache. Files listed in this section
will be explicitly cached after they’re downloaded for the first time.

■ NETWORK—Files listed in this section require a connection to the server.
Resources in this section are never cached and are not available offline.

■ FALLBACK—This section contains a list of files that can act as a fallback if a user
has no connection or the file is inaccessible.

You’re about to look at examples in both ASP.NET MVC and ASP.NET Web Forms that
will give you a better idea of how the HTML5 application cache works.

6.5.1 HTML5 application cache considerations

Remember that any pages you add to the manifest attribute will be cached in the
browser: this includes the page itself! You can’t cache the resources and not the page
because it isn’t designed to work that way. Think of the HTML5 application cache as
extreme HTTP caching. The disadvantage of using the application cache is it

Listing 6.12 A typical cache manifest file

93HTML5 application cache
doesn’t play well with server-side dynamic pages. If you keep your own website in
mind, the pages you would add to the application cache would normally be the
static pages or pages that don’t change very often. If you add the manifest attribute
to your Master Page or Layout View, you’ll cache your entire application and won’t
notice any changes when you refresh. Consider adding this to pages that aren’t
updated dynamically.

NOTE Using the HTML5 application cache in your projects can make debug-
ging your application a nightmare, so if you’re reloading your page and
you’re only seeing the cached version, you’ll need to make a change to the
manifest file in order for the browser to fetch the new version. Alternatively,
you’ll need to clear the application cache for the site. Check your browser for
the particular settings in order to clear the application cache.

6.5.2 HTML5 application cache in an ASP.NET MVC application

Now you’re going to run through the Surf Store application and update it to use
the HTML5 application cache. This will cache certain components on a page within the
user’s browser and enable dramatically faster load times. You’re going to use the power
of ASP.NET and make the Application Manifest file dynamic so you have more con-
trol over the items that you’re caching.

 To enable the application cache you’ll need to include the manifest attribute on
the HTML tag on the view that you wish to add to the application cache. Because the
entire HTML page will be cached itself, you’re going to use pages that don’t change
often, such as the About or Contact page. You’re going to use an MVC Controller to
dynamically generate the manifest file and check the contents of the files that are
being referenced. Update the Contact view in the project to reflect the code in the fol-
lowing listing.

@{
 ViewBag.Title = "Contact";
}

<!DOCTYPE html>
<html lang="en" manifest="/AppCache">
<head>
 <meta charset="utf-8">
 <title>Surf Store Application</title>
 <link rel="shortcut icon"

➥ href="@Url.Content("~/Content/Images/favicon.ico")" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="">
 <meta name="author" content="">
 <link href="@Url.Content("~/Content/Css/bootstrap.css")"

➥ rel="stylesheet"/>
<link href="@Url.Content("~/Content/Css/bootstrap-responsive.css")"

➥ rel="stylesheet"/>

Listing 6.13 Referencing the manifest file

Reference to the AppCache controller
will also point to a route in your
application that will contain the
dynamic manifest file.

94 CHAPTER 6 HTML optimization tips
In the listing you’ve updated the HTML tag to reference the MVC Controller. You’ll
use this controller to dynamically generate the references to the files that you’re going
to store in the browser. Now you’ll create your dynamic manifest page. First, add a
new controller and call it AppCacheController. Then add a new method on your
controller called Index, so the MVC route will map to /AppCache. Notice in the follow-
ing listing how the MVC route matches up to the manifest link that you supplied on
the HTML tag.

using System.Web.Mvc;

namespace SurfStoreApp.Controllers
{
 public class AppCacheController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }
 }
}

Next, add a view for that ActionResult. This view will contain the contents of the
manifest file, shown next.

@using SurfStoreApp.Utils
@{
 Layout = null;
 Response.ContentType = "text/cache-manifest";
}CACHE MANIFEST

NETWORK:
*

CACHE:
JS files
@Url.Content("~/Scripts/jquery-

1.7.2.js").AppendHash(HttpContext.Current.Request)

CSS files
@Url.Content("~/Content/Css/bootstrap.css")

➥ .AppendHash(HttpContext.Current.Request)
@Url.Content("~/Content/Css/bootstrap-responsive.css")

➥ .AppendHash(HttpContext.Current.Request)

FALLBACK:

In chapter 5 you learned about file revving, a technique that appends a query string to
the end of a filename to make sure a fresh version is retrieved every time a file
changes. You’re going to apply the same technique to the manifest file, because you
only want it to be updated when the contents of the referenced files change.

Listing 6.14 The AppCacheController

Listing 6.15 The dynamic manifest file

The Index action on the
AppCache controller

The content type of
text/cache-manifest
notifies the browser that
this is a manifest file.

sign is used for
comments in a
manifest file.

Path to the JavaScript
files to be added to
the application cache

Path of the CSS files
to be added to the
application cache

95HTML5 application cache
In the previous code you’ll notice a method called AppendHash() on the end of the
filenames. This method will read the contents of the file referenced and only change
the hash that’s appended if the contents of the file change. This makes the applica-
tion cache entirely dynamic because there’s no need to update your manifest file
every time a resource (CSS, JavaScript, and so on) file changes. This forces the browser
to request a new version of the file.

 Using the developer tools in a browser is the best way to inspect the application
cache. If you open the web page in Google Chrome and navigate to the Console tab in
the developer tools, you’ll notice something similar to figure 6.15.

 In figure 6.15 the browser is downloading the items referenced in the manifest file
you created. You can also use the Chrome developer tools to inspect the exact items
that have been stored in the application cache (figure 6.16).

 By navigating to the Resources tab and choosing Application Cache, you’ll be
able to inspect the files that have been added to the application cache. In figure
6.16 you will also notice that a hash string has been appended to the end of the file-
names. This means AppendHash is working correctly, and if the contents of the static
files were to change, the application cache would fetch the updated versions based
on the new hash key.

Figure 6.15 The browser creating an application cache and downloading the contents in an ASP.NET
MVC application

Figure 6.16 The resources stored in the application cache in an ASP.NET
MVC application

96 CHAPTER 6 HTML optimization tips

Content
of

ma
notifie

browser
th

manifes
Every time a user who’s had an application cache created in their browser reloads the
page and requests the same resources, it will be fetched from the browser’s cache and
never hit the server. Now the web page can be accessed while they’re offline.

6.5.3 HTML5 application cache in an ASP.NET Web Forms application
Using the Surf Store application, you can easily update the code to use the HTML5
application cache. You’re going to use the power of ASP.NET Web Forms and make the
application manifest file dynamic so you have more control over the items you’re
caching. In order to enable the application cache, you need to include the manifest
attribute on the HTML tag on the page you wish to add to the application cache.
Because the entire HTML page will get cached, you’re going to use pages that don’t
change often, such as the About or Contact page. In order to dynamically generate a
manifest file, you’re going to use an ASP.NET Web Forms page. Open the Contact view
in the project to reflect the code in the following listing.

<%@ Page Title="" Language="C#" AutoEventWireup="true"
CodeBehind="Contact.aspx.cs" Inherits="SurfStoreApp.Contact" %>

<!DOCTYPE html>
<html lang="en" manifest="AppCache.aspx">
<head>
 <meta charset="utf-8">
 <title>Surf Store Application</title>
 <link rel="shortcut icon" href="Images/favicon.ico" />
 <meta name="viewport" content="width=device-width,

 ➥ initial-scale=1.0">
 <meta name="description" content="">
 <meta name="author" content="">
 <link href="Styles/bootstrap.css" rel="stylesheet" />
 <link href="Styles/bootstrap-responsive.css" rel="stylesheet" />

You’ve updated the HTML tag to reference a Web Forms web page. You’ll use this
ASPX web page to dynamically generate the references to the files that you’re going to
store in the browser. Next, create your dynamic manifest page. First, add a new web
page and call it AppCache.

<%@ Page Language="C#" AutoEventWireup="true"

➥ CodeBehind="AppCache.aspx.cs" Inherits="SurfStoreApp.AppCache" %>
<%@ Import Namespace="SurfStoreApp.Utils" %>
<% HttpContext.Current

➥ .Response.ContentType = "text/cache-manifest"; %>CACHE MANIFEST

NETWORK:
*

CACHE:
JS files
<%= "Scripts/jquery-1.7.2.js".AppendHash(Request) %>

Listing 6.16 Referencing the manifest file

Listing 6.17 The dynamic manifest file

A reference to the
AppCache controller

 type
 text/
nifest
s the
 that

is is a
t file.

sign is used
for comments. Path to the JavaScript files

that are to be added to
the application cache

97HTML5 application cache

to

CSS files
<%= "Styles/bootstrap.css".AppendHash(Request) %>
<%= "Styles/bootstrap-responsive.css".AppendHash(Request) %>
FALLBACK:

In chapter 5 you learned about file revving, which appends a query string to the end
of a filename to ensure a fresh version of a file is retrieved every time a file changes.
You’re going to apply the same technique to the manifest file, because you only want it
to get updated when the contents of the referenced files change.

 In the previous code you’ll notice there is a method called AppendHash() on the
end of the filenames. This method will read the contents of the file referenced and
only change the hash that’s appended if the contents of the file change. This makes
the application cache entirely dynamic because there’s no need to update your mani-
fest file every time a resource (CSS, JavaScript, and so on) file has changed. This will
force the browser to request a new version of the file.

 Using the developer tools in a browser is the best way to inspect the application
cache of your Web Forms application. If you open the web page in Google Chrome,
you will notice something similar to figure 6.17.

 In figure 6.17, the browser is downloading the items that are referenced in the
manifest file that you created. If you refresh the page, you’ll see the browser will sim-
ply retrieve the files it needs from the application cache.

 Using the HTML5 application cache in your ASP.NET Web Forms application can
be an effective way of improving the load time of your web pages.

6.5.4 Application cache support
By adding these changes to your application you’re ensuring the user’s browser will
no longer retrieve the files from your server, but will instead fetch them from its own
cache (figure 6.18). This can be a good thing and a dangerous thing. Use the HTML5
application cache wisely! It’s important to remember that using the HTML5 applica-
tion cache might not suit your situation, depending on the purpose of your web appli-
cation. If you have a dynamic website that relies on constantly providing your users
with fresh content, this might not be the best solution for you. Instead, only use it on
pages that don’t change often or pages that won’t be affected by this level of caching.

Path of the CSS files
that are to be added
the application cache

Figure 6.17 The browser creating an application cache and downloading the contents in an ASP.NET
Web Forms application

98 CHAPTER 6 HTML optimization tips
6.6 Summary
There are some important best practices that should be applied to your HTML in
order to achieve the best load times from your web pages. This chapter answered a few
vital questions about how resources should be placed in a web page’s HTML, and
you’ve covered some pretty cool HTML5 features. When used correctly, HTML5 can be
harnessed to improve your web page’s performance. HTML5 doesn’t require as many
HTML attributes in order for the browser to interpret and display its resources, so you
can use fewer characters in your web page’s HTML. That’s great because fewer charac-
ters equal faster download times.

 Another great feature of HTML5 is Web Workers. You can use them to execute long-
running JavaScript code in a separate thread of your browser. This feature is great if you
need to pass large amounts of data to the server side or if you need to perform intensive
number crunching on the client. The HTML5 application cache can also bring perfor-
mance benefits to your website. It is designed to allow you to run your web application
offline and can be harnessed to improve your application’s load time.

 In the next chapter, we’re going to take a look at image optimizations and how you
can squeeze those precious bytes out of your images to substantially speed up your
page load times.

Figure 6.18 The events that take place in a browser when an application cache
is requested in an ASP.NET Web Forms application

Image optimization
As the old saying goes, “A picture is worth a thousand words.” Most websites today
rely heavily on images to enhance their visual look and feel, so it isn’t surprising to
learn that images often make up the bulk of a web page. Every byte counts in perfor-
mance optimization and it’s important to optimize these images as much as possible.

 In this chapter you’re going to learn about techniques you can apply to your
website’s images that will reduce their file size and reduce the overall weight of
your web pages. Modern image optimization techniques are proven to reduce
image size by stripping unnecessary data from the file, thus reducing the file size
without affecting image quality. The images on your website will look exactly the
same but will be significantly lighter and quicker to download. You will learn how to
use online and command line image optimization tools that will make a big differ-
ence to the size of your web pages. In this chapter, you will also discover data URIs
and how they can be used with images in order to reduce the number of HTTP
requests that a web page makes.

This chapter covers
■ The importance of image optimization
■ Online and command line image

optimization tools
■ Automatic data URIs
99

100 CHAPTER 7 Image optimization
7.1 What’s the big deal with image optimization?
Images are a huge part of the internet today. Whether your website is a glossy e-commerce
site, a magazine website, or a small blog, you will have made use of images at some point.
Using images on your website can add and enhance the design, but they may add
unnecessary bytes depending on the size and quality of the images. As you can see in
figure 7.1, if you break down the components of the average website, you’ll find the
bulk of the bytes come from the images.

 The chart in figure 7.1, produced by httparchive.org and used with permission,
shows the average number of bytes per content type on web pages. You can see that
the images on an average web page make up a large portion of the overall bytes. In
this case, this is almost 63%! Remember that even if you make big gains and reduce
the size of scripts, styles, and HTML in a web page, the largest component may be the
images. The easiest way to improve page performance, without removing any features,
is to optimize the images. You don’t want to waste all the optimization work you’ve
done thus far by including bloated images in your website. Leading up to this chapter,
you’ve focused your optimization efforts on techniques such as compression, HTTP
caching, minifying and bundling, and HTML optimization. But there’s been no direct
emphasis on images as of yet. In chapter 3, you learned that compression is highly
effective for removing extra bytes in a web page, but it can’t be applied to images
because they’re already compressed.

 If images are already compressed, how do you go about reducing the size of the
files? Well, there are a few techniques you’re going to cover in this chapter that will
help you reduce the size of your image files significantly.

7.2 Online image optimization tools
I know that whenever I display images on a web page, I like to ensure that the image
quality and clarity are as high as possible. Modern mobile phones, tablets, and com-
puter screens are moving toward ultrahigh resolution screens that are capable of
showing images at their best. The last thing you want to do is let image quality suffer

Figure 7.1 Images on a web page
make up a significant portion of the
total bytes (Source: httparchive.org)

www.httparchive.org
www.httparchive.org

101Online image optimization tools
when you reduce the size of an image. If you work in an organization with UI or
graphic designers, they won’t be pleased with you if they find out their images have
lost quality and become pixelated! Fortunately there are free tools available that opti-
mize images without changing their look or visual quality. This is known as lossless opti-
mization, and it ensures that the quality of the image will not degrade.

 There’s visually no difference between the images in figure 7.2. The file size has
been reduced, but the quality hasn’t changed during the optimization process.
Although 35 KB is only a small savings, every file size reduction you make to the
images on your web page means the overall page weight will begin to improve. Now
I’m going to describe some of those free tools you can use to optimize and reduce the
file size of your images. These are just a few of the tools that are available on the inter-
net, so look for the tool that best suits your needs.

7.2.1 Smush.it

Smush.it is my favorite image optimization tool by far. It’s an online tool built by the
team at Yahoo!, and is freely available at http://www.smushit.com/ysmush.it/. The
tool is easy to use. You simply choose the files you wish to optimize and upload them
to the smush.it website. Once optimization is complete, the tool will finish running
and allow you to download the optimized images. The site also shows you the total file
savings you’ll gain with all the images that you uploaded.

 Smush.it will take most image formats (JPG, JPEG, PNG, and GIF) and process them
for you. You’re going to work with the images in the Surf Store application later in the
chapter so you can use the tool and see how effective it is at file optimization. Figure 7.3
shows the results from processing some image files with Smush.it, allowing you to com-
pare your original file sizes to the optimized file sizes.

 As you can see, you managed to cut 143.07 KB from the images—this is a signifi-
cant chunk of data! All unnecessary metadata was stripped from the files without
changing or otherwise affecting the quality of the images.

7.2.2 Kraken

Another freely available online image optimization tool is Kraken. Available at http://
kraken.io/, this tool is similar to Yahoo! Smush.it and offers support for all major
image formats.

Figure 7.2 Image
quality isn’t affected by
lossless optimization.

http://www.smushit.com/ysmush.it/
http://kraken.io/
http://kraken.io/

102 CHAPTER 7 Image optimization
The site offers plugins for both Firefox and Chrome that allow you to optimize all the
images on a web page. This tool is definitely worth considering.

7.3 Command line image optimization tools
Using a manual tool such as Smush.it requires a lot of human intervention, and
depending on the frequency of your website updates, it may not always be the best
option. But there are a few command line tools you can use to automate the image
optimization process.

 The one downside to using command line tools is each tool is aimed at a specific
image format. Therefore you’ll need to run a different tool for each image format you
work with. If done correctly, this can be achieved easily and integrated into your build
or continuous integration process, which means the image optimization process
becomes totally automated.

Figure 7.3 The file savings gained by using the Yahoo! Smush.it tool

Figure 7.4 The command line settings for Pngcrush

103Image Optimizer—a Visual Studio extension
7.3.1 Pngcrush

Pngcrush is a free image optimizer for PNG images. This image format is common on
the web today, and all modern browsers support it. Pngcrush is available at http://
pmt.sourceforge.NET/pngcrush/. Once you’ve downloaded the tool, simply fire up
your command line in Windows and use the syntax in figure 7.4.

 I’ve added a test image called original.png to the same directory as Pngcrush.exe.
If you break this command line down, the key details are:

■ original.png—The name of the source PNG image you’re optimizing.
■ result.png—The destination PNG file that’s created after the image has been

optimized.

Once the tool has finished running, you’ll have a new file in the same folder called
result.png. Depending on the contents and make-up of the image, the overall file size
should be significantly reduced. Unfortunately, this tool is only for PNG format files
and you’ll need to run other tools to process other image file formats.

7.3.2 Jpegtran
A great tool that’s free and easy to use in a command line is Jpegtran. It can be run
against the JPEG format and the command line setup is pretty similar to Pngcrush. To
download the tool, visit http://jpegclub.org/jpegtran/. The site seems a little basic,
but the tool works well and is efficient as a command line image optimizer for JPEGs.

 Once you’ve downloaded the tool, fire up your command line in Windows. The
syntax in figure 7.5 will process an image with the Jpegtran tool.

 I’ve added a test image called original.jpg to the same directory as jpegtran.exe. If
you break this command line down, the key details are:

■ original.jpg—The name of the source jpg that you’re optimizing.
■ result.jpg—The destination JPEG file that’s created after the image has been

optimized.

You’ll notice that the command line and processing are quite similar to Pngcrush and
figure 7.4. Once the tool has finished running, it will create an optimized file in the
same directory as the tool.

7.4 Image Optimizer—a Visual Studio extension
Another great tool that’s available as a Visual Studio plugin is Image Optimizer.
Unlike the image optimization tools we’ve already covered in this chapter, it’s an

Figure 7.5 The command line settings for Jpegtran

http://pmt.sourceforge.NET/pngcrush/
http://pmt.sourceforge.NET/pngcrush/
http://jpegclub.org/jpegtran/

104 CHAPTER 7 Image optimization
extension you can use from within the Visual Studio development environment. The
extension adds a right-click context menu to any folder and image in your Solution
Explorer and it allows you to automatically optimize all PNG, GIF, and JPEG files in that
folder. The extension uses the Yahoo! Smush.it and PunyPNG tool to optimize the
images. To download the extension, go to http://mng.bz/2MR6.

 Figure 7.6 shows the right-click context menu that’s available with the Image Opti-
mizer extension. Once you download and install the extension, right-click a folder or
individual image and select Optimize. The image(s) will be optimized automatically
and you won’t even need to leave Visual Studio.

 While this tool is handy and enables you to optimize your images at the click of
a button, you might find automating the updates using a command line tool is
more effective depending on your environment setup and how often you change
your images.

7.5 Using data URIs
So far you’ve learned about many of the tools you need in order to optimize your
images and reduce their overall size. This reduction can go a long way toward reduc-
ing the total weight of your web pages, but what if there was a way to show these
images without even making an HTTP request for them? It doesn’t sound possible, but
there is a sneaky trick you can apply using data URIs.

 Data URIs are a scheme modern browsers use to read image objects that are
embedded in a web page. Embedding data means the browser doesn’t need to make
an extra HTTP request to retrieve the image. The data URI scheme provides a way to
include data in-line in web pages, as if they were external resources. You can actually
embed the image in the page without having to make a request to the server! Instead
of adding a reference to your image as a path or URL, you embed the image directly
into the document using a Base64-encoded string. The data URI scheme can be applied
to images in CSS, link tags, and image tags. The browser automatically understands the
string and decodes it there and then instead of retrieving it via an HTTP request.

 Normally you would reference an image in your HTML like so:

If you used data URIs, it would look something like this:

The difference is the image can be decoded from the same page, meaning one less
HTTP request and a faster page load time. In the sample that’s provided, the data string
is quite short, but you’ll notice a much longer string if you’re using a larger image.

Figure 7.6 The right-click
context menu that Image
Optimizer generates. Simply
select the image or folder and then
choose Optimize images.

http://mng.bz/2MR6

105Using data URIs
 You can achieve the same effect by using data URIs in CSS. You normally reference
an image like this:

.logo {
background: url("/content/images/logo.png")
}

But you can reference the image like this with data URIs:

.logo {
background: url()
}

Data URIs are a great way to reduce the overall page weight and the number of HTTP
requests your web page is making. If your website focuses on mobile device usage, the
fewer HTTP requests your website needs to make, the better the performance.

 The advantages of using data URIs are:

■ Data URIs reduce the number of HTTP requests.
■ HTTP requests will be handled a lot faster.

Unfortunately, data URIs aren’t without their limitations. As a rule, you should only
use the data URI scheme when your images aren’t too large. A large image will create
a very long string in your HTML, and your string size might become significantly larger
than the original image size! Other disadvantages of using data URIs are:

■ No support in old versions of Internet Explorer.
■ Base64-encoded data URIs are 1/3 larger in size than their binary equivalent,

but this extra overhead is reduced to 0–10% if the HTTP server compresses the
response with Gzip.

■ Certain browsers have size limitations. (Internet Explorer 8 limits data URIs to a
maximum size of 32 KB.)

As with most new features, some older browsers don’t offer support, but it isn’t as bad
as you think—Firefox, Chrome, Opera, Safari, and IE8+ all offer support for data URIs.
Another factor to consider is that you need to update the data URI every time you
make a change to an image. This could become a maintenance nightmare if your web-
site is image-intensive. The best way to handle this is to automate the data URI creation
process. This is where ASP.NET comes in. You’re about to learn about a technique that
will enable you to apply automatic encoding logic to your images so you don’t have to
re-encode each time you update your image!

NOTE If you decide to use data URIs on your website, you should still try to
optimize your images using the image optimization tools mentioned earlier.
Reducing the image file sizes will also mean that you’ll produce smaller
Base64-encoded strings.

You may be wondering whether it’s worth going to all this effort to produce data URIs
automatically. You need to choose the code that applies to your situation best. If you

106 CHAPTER 7 Image optimization
find your images, icons, or logos don’t change that often, you might be better off gen-
erating the data URI manually, but you won’t get the benefit of browser detection
logic. With a bit of clever caching, this code can produce lightning fast results and
shave precious milliseconds from your page load time.

7.5.1 Implementing data URIs in an ASP.NET MVC application

HTML helpers in ASP.NET MVC can be a great way to
quickly and easily apply repetitive server-side logic to
operations on your Views. We’re going to cover an
example that will get you comfortable using the data
URI scheme on your images in no time. The updates
are going to be applied to the source code of the
Surf Store application.

 As the web developer for the Surf Store website,
you’ve decided it needs a logo in the header bar.
This is a great opportunity to use data URIs because
the image is small and the technique will require
one less HTTP request to the server. The HTML code
in the Layout view has been updated to include a
small logo, as shown in figure 7.7.

 How do you make this update? Begin by navigat-
ing to your Solution Explorer and adding a class file
called DataUriUtils.cs to the Utils folder (figure 7.8).

 Inside the DataUriUtils.cs class file, add this code.

private static bool CanBrowserHandleDataUris()
{
 float browserVersion = -1;

 HttpRequest httpRequest = HttpContext.Current.Request;
 HttpBrowserCapabilities browser = httpRequest.Browser;

 if (browser.Browser == "IE")
 {
 browserVersion = (float) (browser.MajorVersion
 ➥ + browser.MinorVersion);
 }

Listing 7.1 Checking to determine if the browser can handle data URIs

Figure 7.7 The updated header bar in the Surf Store application in an ASP.NET MVC
application

Figure 7.8 Adding a new class in
the Solution Explorer

Check to see if the
browser is Internet
Explorer

Determine the
version of IE

107Using data URIs

M
image

curr
path
 if (browserVersion > 8 || browserVersion == -1)
 {
 return true;
 }

 return false;
}

The code is used to determine if the user’s browser is capable of handling data URIs.
Earlier versions of IE aren’t capable of handling data URIs. In order to serve the same
experience to all users regardless of their browser, it’s best if you check first. You want
users with an older browser to see the images.

 Next you need to perform a check to see if the file size is within a suitable bound-
ary. Add the following code to the same class in your solution.

private static bool IsFileSizeCorrect(string imageUrl)
{
string imagepath = HttpContext.Current.Server.MapPath(imageUrl);

// determine the length
long fileLength = new FileInfo(imagepath).Length;
return fileLength < 32768;
}

The code checks to see if the file size is less than 32 KB, and returns a Boolean value
you’ll use to decide whether to proceed with the optimization. If it returns true, then
it will proceed and return a data URI image. If it is false, it will simply fall back and
return the original image.

 Now you need to convert the image to a Base64-encoded string. The code in the
following listing uses the image URL and creates a Base64-encoded string based on the
image that it reads.

private static string ConvertImageToBase64String(string imageUrl)
{
 string imagepath = HttpContext.Current.Server.MapPath(imageUrl);

 using (Image image = Image.FromFile(imagepath))
{
 using (MemoryStream memoryStream = new MemoryStream())
 {
 // Convert Image to byte[]
 image.Save(memoryStream, image.RawFormat);
 byte[] imageBytes = memoryStream.ToArray();

 // Convert byte[] to Base64 String
 string base64String = Convert.ToBase64String(imageBytes);
 return base64String;
 }
 }
}

Listing 7.2 Determining if the browser can handle data URIs

Listing 7.3 Converting an image to a Base64-encoded string

If the IE version is
higher than version 8,
return true

Determine the
file length (size)

If the file length is within the boundaries
then return true, else return false.

ap the
 to the
ent file
 on the
server

Read the image
from disk based
on this file path

Convert
the image
object to
a Base64-
string

108 CHAPTER 7 Image optimization

R
sni
HTM

conta
B
e

Combining all the methods will return a chunk of image HTML and will be embedded
in the page using the HTML Helper. You can use HTML Helpers to reduce the amount
of tedious typing you must perform to create a standard HTML page.

 The code in listing 7.4 uses the methods you’ve worked on and combines them to
create your image HTML using data URIs. First, you use the two methods that you
wrote in listings 7.1 and 7.2. This code checks if the file size isn’t too large and also that
the browser is capable of handling data URIs. You need to do this in order to serve the
best experience to all users regardless of the browser that they are using. If the image
passes the first two checks, the code converts the image to a Base-64 encoded string
and builds an image tag with the data URI scheme and the Base-64 encoded string. If
for any reason the image didn’t meet the criteria, it will be returned as a standard
image tag.

public static MvcHtmlString DrawImage(this HtmlHelper helper, string
imageUrl, string alt)

{
if (CanBrowserHandleDataUris() && IsFileSizeCorrect(imageUrl))
{
 // Get the file type
 string fileType = Path.GetExtension(imageUrl);
 if (fileType != null)
 {
 fileType = fileType.Replace(".", "");
 }

 // Convert the image
 imageUrl = ConvertImageToBase64String(imageUrl);

 return new MvcHtmlString(String.Format("<img alt=\"{0}\" " +
 "src=\"data:image/{1};base64,{2}\" />",alt,
 fileType, imageUrl));
}

return new MvcHtmlString(String.Format("<img alt=\"{0}\"

➥ src=\"{1}\" />", alt, imageUrl));
}

You now need to implement the code on your views. You’re adding this change on the
Layout view because it’s being used for the standard layout for the logo across all
views. Instead of creating a standard HTML image tag, you’re going to use the HTML
Helper that you created. The code in the next listing will create an HTML image tag if
the image and the browser meet the requirements.

<div class="span3">
 <!-- Logo -->

@Html.DrawImage(Url.Content(

Listing 7.4 Creating a snippet of HTML to return in the HTML Helper

Listing 7.5 Implementing the HTML helper on the view

Determine if
the browser is
capable of
handling data
URIs and if the
file size isn’t
too large

Convert the
image to a Base64-
encoded string

eturn a
ppet of
L that

ins the
ase64-

ncoded
string

If the image did
not meet the
requirements, simply
return a standard
HTML image tag.

109Using data URIs
➥ "~/content/images/store-logo.png"),
 "Surf Store Logo")
Surf Store Application
</div>

If you fire up the application and review the results of the HTML, it will look some-
thing like this:

<div class="span3">
<!-- Logo -->

 <img alt="Surf Store Logo"
 src="
 ➥ AAAANSUhEUgAAACg
 ➥ AAAAoCAYAAACM/A9
 ➥ Zoyj8pW/wfGAx77w
 ➥ dBG5WoOXAAAAAASU
 ➥ VORK5CYII=" />
 Surf Store Application
</div>

By using this HTML helper to produce a data URI in the HTML, you’ve effectively cre-
ated one less request for the browser.

 If you compare the logo in the Surf Store application before and after applying the
data URIs, you’ll notice there is no visual difference whatsoever. The browser has inter-
preted the Base64-encoded string and converted it to the logo in figure 7.9.

7.5.2 Implementing data URIs in an ASP.NET Web Forms application

Using the power of the ASP.NET framework, data URIs can be easily implemented into a
Web Forms application. The first thing you need to do is check to see if the user’s
browser is compatible with data URIs. Using ASP.NET, you can easily check the browser’s
capabilities and apply this logic on the server side, but it would be best if you had a
method that simply produced the HTML you need and did the check at the same time.

 In this example, you’re going to make changes to the Surf Store application’s
source code. As the web developer on the site, you’ve decided it needs a logo in the
header bar. This is a great opportunity to use data URIs because the image is small and
this technique will require one less HTTP request to the server. The HTML code in the
Master page has been updated to include a small logo, as shown in figure 7.10.

 Next, navigate to your Solution Explorer and add a class file called DataUriUtils to
the Utils folder (figure 7.11).

 Inside the DataUriUtils.cs class file add the code in listing 7.6.

The HTML Helper will use the
image path and create a data URI
in the HTML image tag.

Figure 7.9 The result of the data URI image tag in the header

110 CHAPTER 7 Image optimization
private static bool CanBrowserHandleDataUris()
{
 float browserVersion = -1;

 HttpRequest httpRequest = HttpContext.Current.Request;
 HttpBrowserCapabilities browser = httpRequest.Browser;

 if (browser.Browser == "IE")
 {
 browserVersion = (float)
 ➥ (browser.MajorVersion + browser.MinorVersion);
 }

 if (browserVersion > 8 || browserVersion == -1)
 {
 return true;
 }

 return false;
}

The code determines if the user’s browser is capable of handling data URIs. Internet
Explorer 8+ is capable of handling data URIs. You still want to serve the same experi-
ence to all users regardless of their browser, so it’s best if you check first. You don’t

Listing 7.6 Checking to determine if the browser can handle data URIs

Figure 7.10 The updated header bar in the Surf Store application in an ASP.NET
Web Forms application

Figure 7.11 Add a new class
file called DataUriUtils in the
Solution Explorer

Check if the
browser is IE.

Determine the
version of IE.

If the IE version is
greater than version 8,
return true.

111Using data URIs

nt
on
r

he
able
ta

e file
arge
want some users on an older browser not to see the images! If the code detects an
older browser, you return a standard image instead.

 Next you need to check to see if the file size is within a suitable boundary. Add the
following code to the same class in your solution.

private static bool IsFileSizeCorrect(string imageUrl)
{
string imagepath = HttpContext.Current.Server.MapPath(imageUrl);

// determine the length
long fileLength = new FileInfo(imagepath).Length;
return fileLength < 32768;
}

The code checks to see if the file size is less than 32 KB, and returns a Boolean value
that you’ll use to decide whether to proceed with the optimization.

 Next, you need to convert the image to a Base64-encoded string. The code in the
following listing uses the image URL and creates a Base64-encoded string based on
the image that it reads.

private static string ConvertImageToBase64String(string imageUrl)
{
 string imagepath = HttpContext.Current.Server.MapPath(imageUrl);

 using (Image image = Image.FromFile(imagepath))
 {
 using (MemoryStream memoryStream = new MemoryStream())
 {
 // Convert Image to byte[]
 image.Save(memoryStream, image.RawFormat);
 byte[] imageBytes = memoryStream.ToArray();

 // Convert byte[] to Base64 String
 string base64String = Convert.ToBase64String(imageBytes);
 return base64String;
 }
 }
}

Finally, you wrap it all up. You can use all of the previous methods together to return a
chunk of image HTML.

public static string DrawImage(string imageUrl, string alt)
{
 if (CanBrowserHandleDataUris() & IsFileSizeCorrect(imageUrl))
 {
 // Get the file type

Listing 7.7 Determining if the browser is capable of handling data URIs

Listing 7.8 Converting an image to a Base64-encoded string

Listing 7.9 Creating a snippet of HTML to return as an HTML string

Determine
the file
length (size)

If the file length is within the boundaries
then return true, else return false.

Map the
image to
the curre
file path
the serve

Read the image
from disk based
on this file path

Convert
the image
object to
a Base64

string

Determine if t
browser is cap
of handling da
URIs and if th
size isn’t too l

112 CHAPTER 7 Image optimization

Ret
snipp
HTML

contain
Ba
enc

s

e
t
e
s,
n
d
e

g.
 string fileType = Path.GetExtension(imageUrl);
 if (fileType != null)
 {
 fileType = fileType.Replace(".", "");
 }

 // Convert the image
 imageUrl = ConvertImageToBase64String(imageUrl);

 return String.Format("<img alt=\"{0}\" " +
 "src=\"data:image/{1};base64,{2}\" />",
 alt, fileType, imageUrl);
 }
return String.Format("", alt, imageUrl);
}

The code in the listing uses the methods that you’ve worked on and combines them
all to create your image HTML using data URIs. In order to serve the best experience
to all browsers, the code checks if the file size isn’t too large and if the browser is capa-
ble of handling data URIs. If the image passes the first two checks, the code then con-
verts the image to a Base64-encoded string and builds an image tag using the data URI
scheme and the Base64-encoded string. If for any reason the image did not meet the
criteria, it will get returned as a standard image tag.

 Now you need to implement this code in your web pages. I am adding this change
on the Master page because it’s being used as a standard layout for the logo across all
pages. Instead of creating a standard HTML image tag, I am going to use static method
that you created.

<div class="span3">
 <!-- Logo -->

<%= DataUriUtils.DrawImage("Images/store-logo.png","Store Logo") %>
Surf Store Application
</div>

The code in listing 7.10 will create an HTML image tag if the image and the browser
meet the requirements. If you fire up the application and review the results of the
HTML, it will look something like this HTML:

<div class="span3">
<!-- Logo -->

 <img alt="Surf Store Logo"
 src="
 ➥ AAAANSUhEUgAAACg
 ➥ AAAAoCAYAAACM/A9
 ➥ Zoyj8pW/wfGAx77w
 ➥ dBG5WoOXAAAAAASU
 ➥ VORK5CYII=" />
 Surf Store Application
</div>

Listing 7.10 Implementing the static method on the web page

Convert the
image to a
Base64-
encoded
string

urn a
et of
 that
s the
se64-
oded
tring

If the imag
did no

meet th
requirement
simply retur

a standar
HTML imag

ta

The static method will use the
image path and create a data URI in

the HTML image tag.

113The importance of specifying image dimensions
By using this HTML helper to produce a data URI within the HTML, you’ve effectively
created one less request for the browser. Because the image is small enough, it hasn’t
had an impact on the overall size of the HTML.

 When you compare the logo in the Surf Store application before and after apply-
ing the data URIs, you’ll notice there is no visual difference. The browser has inter-
preted the Base64-encoded string and has converted it to the logo in figure 7.12.

7.6 The importance of specifying image dimensions
After you’ve processed and optimized the images in your web pages, look out for
image dimensions in your HTML. It’s easy to forget to specify the height and width of
an image on your web page.

The preceding code snippet is an example of an HTML image tag without the
dimensions specified. It’s important to specify the dimensions of an image because
if a browser knows the dimensions of an element in a web page, it can begin render-
ing even before the images are downloaded. As the page is parsed and the browser
begins laying it out, it needs to be able to flow around elements such as images.
You’ll even notice this appears as a suggestion when you profile your site using
Google PageSpeed. Figure 7.13 shows the Google PageSpeed suggestion to specify
image dimensions.

Figure 7.12 The result of the data URI image tag in the header in an ASP.NET
MVC application

Figure 7.13 Google PageSpeed suggests specifying the dimensions of an image to
speed up page load times.

114 CHAPTER 7 Image optimization
If dimensions aren’t specified on the image tag, the browser will need to reflow and
repaint once the image is downloaded. It’s best if you specify your images similar to
this code snippet:

This simple change will allow the browser to render your page faster and begin dis-
playing images and content to your users even before all the images are downloaded.

7.7 The results
Using the Surf Store application you’ve worked with throughout this book, you opti-
mized and reduced the file size of the images using free tools that are available to
download online. Next, you added a small logo to the Surf Store application and
using data URIs you reduced any extra HTTP requests that needed to be made.

 Now that you’ve made your improvements to the Surf Store application, you can
compare the applications before and after performance. In this previous chapter, you
looked into the advantages of using HTML5 in a web application. These advantages
reduced the size of the HTML and after running the Surf Store application through
the Google PageSpeed tool, the score on the home landing page came in at 91. Using
the Yahoo! YSlow tool, the empty cache for the landing page showed 11 HTTP requests
and a total page weight of 835 KB.

 In this chapter, the total weight of the images on the landing page came to around
686 KB and 6 images in total. If you compare the changes after the image updates
you’ve made in this chapter, the results are impressive (figure 7.14).

 Wow! The overall PageSpeed score has jumped from 91 to 99 (out of 100). You’ve
managed to make some pretty significant improvements to the overall load time and
page speed. If you take a look at the Yahoo! YSlow results after making these changes,
the results reveal similar gains (figure 7.15).

 The Yahoo! YSlow performance score has also jumped up to 94, which is a signifi-
cant improvement from 91. This is a solid result and you’ve significantly improved the
performance score since you started out in chapter 3.

 The chart in figure 7.16 shows that the overall image weight has also been
reduced.

Figure 7.14 The PageSpeed score after applying the updates in this chapter

115Summary
By applying the image optimization techniques you learned in this chapter, you’ve
managed to cut about 147 KB from the image weight and therefore the total weight of
the page. This is a significant reduction. If you applied these techniques to any site
you’re currently working on, you could produce even larger savings.

7.8 Summary
Images are often the heaviest components by weight in most web pages. By optimizing
the images in your web pages, you can significantly reduce their size and reduce total
page weight. In this chapter, you learned about freely available tools you can use to
optimize your images and reduce their file size.

 The image optimization tools you learned about in this chapter use lossless optimi-
zation, which won’t affect the look or visual appearance of the images in any way. You
learned about two online tools: Smush.it by Yahoo! and Kraken.io which allow you to
optimize your images online and in batches. Another alternative is the ability to auto-
mate image optimization. Two tools you looked at were Jpegtran and Pngcrush—both
are command line-based and are very effective at optimizing images. The final tool
you learned about was the Image Optimizer for Visual Studio. It allows you to auto-
mate image optimization inside of Visual Studio with the click of a button.

 Data URIs can be manually added to a web page, but in this chapter you learned a
technique that allowed you to convert the image to a Base64-encoded string and
embed the resource in the page automatically. The technique handles images that are
updated frequently and makes sure you don’t need to update your HTML each time

Figure 7.15 The Yahoo! YSlow
score after making the image
updates described in this chapter

Figure 7.16 The Yahoo! YSlow
score after making the image
updates described in this chapter

116 CHAPTER 7 Image optimization
the change takes place. The code takes support for older browsers into account, as
well as images that might be too large.

 This chapter was an important step in the overall performance improvement of
your website. Optimizing the images in your website can save valuable bytes and
improve your page load times radically. Even though you’ve produced great Google
PageSpeed and Yahoo! YSlow performance scores thus far, you can take your website
even further and produce better results! In the next chapter, you’ll learn more about
ETags and why they’re important to web page performance.

ETags
In chapter 4, we examined and implemented HTTP Expires headers in an ASP.NET
application. These HTTP headers tell the browser it can store certain components
in its cache for a set amount of time, thereby reducing page load times because the
browser doesn’t need to retrieve these components from the server. In order to
ensure the components are still valid, the browser makes a small validation request.
In this chapter, you’re going to investigate the ways the browser validates its cache
components and what you can do to eliminate unnecessary HTTP requests.

ETags, also known as Entity Tags, are a protocol used for HTTP caching. They’re
unique strings that are sent back in the HTTP response that help the browser iden-
tify and validate the browser cache. If used incorrectly they can be inefficient, so in
this chapter you’re going to learn how to tweak your application so it performs at
its best.

This chapter covers
■ ETags: what they are and why you should

change them
■ How browsers validate cache components
■ Removing ETags in ASP.NET Web Forms and

ASP.NET applications
117

118 CHAPTER 8 ETags
8.1 What are ETags?
Every time you make an HTTP request for a resource on a web server, an ETag is
attached in the HTTP response data. These unique strings are used to identify the
cache and validate whether the cache in the user’s browser matches the one on the
server. The browser cache can be much more efficient, and it saves bandwidth,
because the web server doesn’t need to send a full response if the content hasn’t
changed. In chapter 4, in the discussion of HTTP caching and the Expires header, you
learned that when you tell a browser to cache a resource in a web page, it stores it
along with an expiration date. The browser uses both the ETag and the Expires date
when validating the freshness of a resource.

 Figure 8.1 shows an ETag in the Response header of a resource. The ETag shows
a simple string that looks similar to a GUID, a unique reference number often used
in software development. This unique string provides another way to validate
cached entries other than the last-modified date. It’s stored against the resource in
the browser, and anytime you make an HTTP request for the same resource, it will
be sent in the HTTP headers of the request. ETags are similar to fingerprints
because they can be quickly compared to determine if two versions of a resource
are the same.

 If you revisit a web page or refresh the page, the browser validates the resource
before reusing it by making a small HTTP request and sending up the ETag it’s stored
against that resource, as illustrated in figure 8.2.

 Figure 8.2 is a typical HTTP request header that contains an ETag. It’s sent up in
the If-None-Match field and if the component hasn’t expired in cache and it
matches what’s on the server, the server returns an HTTP status code of 304 Not
Modified. This small check must be performed each time but it’s much more

Figure 8.1 The ETag is sent back by the server in an HTTP response.

Figure 8.2 An HTTP Request header containing the ETag that’s stored against that
component. It’s sent up in the If-None-Match field.

119What are ETags?
efficient than downloading the file with each HTTP request and receiving a 200
HTTP status code.

 If you open your developer tools and analyze the network traffic, you might see
something similar to figure 8.3. It shows a typical set of cached responses that return a
304 Not Modified HTTP code.

 This unique string is sent back and forth between the server and browser, making
ETags a flexible and efficient method of validating a cached component.

ETags aren’t without their limitations. They rely on a hash algorithm to generate a
unique string, and the outcome of this algorithm will differ depending upon which
server you land. If you run your website across multiple servers with a load balancer
(figure 8.4), you’ll receive a different ETag on each server. The more servers you have

Figure 8.3 The
network tab shows 304
HTTP statuses. The
server returns this
status code if the
component is still valid
and matches the ETag
and last-modified date.

Figure 8.4 In a web farm environment, you’ll get different ETags depending on which
server you land on.

120 CHAPTER 8 ETags
in a cluster, the lower the odds are that you’ll share the same ETag across the servers. If
each server uses a different ETag, the ETag won’t validate against the component and it
will need to perform a full HTTP request in order to update the component.

 Figure 8.4 shows what happens when a user moves between servers in a multiweb
server environment. The ETags returned by each server are different, even though the
component is identical and should validate correctly. These extra requests are waste-
ful because you’ve done all the hard work and added HTTP Expires headers, but it
won’t validate if the ETag is different and a full HTTP request will have to be made.

 What does this mean for you as a developer, and how can you make sure this
doesn’t happen? If you run your website in a web farm or load-balanced environment,
it’s best to remove the ETags altogether.

NOTE If you’re hosting your website on one server, it isn’t necessary to remove
ETags. The same ETag will be used every time and the validation check will take
place efficiently and correctly. The rest of this chapter will have no bearing on
your development and you should skip this step completely.

If you run your website through the Yahoo!
YSlow performance tool, you may notice a rec-
ommendation similar to the one in figure 8.5.

 This YSlow rule suggests you remove ETags
if your websites are running in a web farm
environment.

8.2 Why should I change ETags?
There has been a big debate surrounding ETags for a number of years. Some in the
developer community say it’s better to leave ETags in place because they’re there for
a reason. In 2006, Steve Souders wrote the original 14 rules for faster loading web-
sites (table 2.2). It’s not surprising that one of these original rules was the removal
of ETags.

 If you run your website in an environment with multiple servers, you’ll come across
the scenario where your users are served different ETags for the same component. It’s
even more prevalent today when many organizations run their websites in the cloud
with multiple instances. Your users will notice slower page loads and your bandwidth
will be wasted. You’re looking to be as efficient as possible and avoid invalidating all of
the work you’ve done on the HTTP Expires headers thus far.

 If ETags are a method of validating a cache component and you remove it, how
does the server know if the component is still valid? Even if the ETag is removed, the
Last-Modified header will still validate the component based on its timestamp. By
removing the ETag you’re also effectively reducing the size of the header in the HTTP
request and HTTP response. That’s one less piece of data being passed back and forth
from the server. In the remainder of this chapter, you’re going to learn how to remove
ETags in both ASP.NET Web Forms and ASP.NET MVC.

Figure 8.5 The Yahoo! YSlow rule
recommends configuring ETags.

121Removing ETags in ASP.NET Web Forms and ASP.NET MVC applications

he
8.3 Removing ETags in ASP.NET Web Forms
and ASP.NET MVC applications
Unfortunately there is no simple way to remove
ETags in an ASP.NET application. Most of the IIS con-
figuration work you’ve done thus far has been done
inside an easy-to-use interface, but in order to make
this change you’ll need to create a custom module to
remove the ETags. You’ll practice this ETag removal
technique on the Surf Store application you’ve been
working on throughout this book.

 The code for this chapter can be downloaded
from the Github repository at https://github.com/
deanhume/FastASPNetWebsites. Once you’ve down-
loaded the code, navigate to the chapter 8 folder and
open the solution under your preferred development
approach (Web Forms or MVC). The sample code
you’re about to run through can be applied to both
ASP.NET Web Forms applications and ASP.NET MVC.

 Start by adding a new class to the Utils folder, called ETagUtils.cs (figure 8.6).
 Next, add the code in this listing to the class file.

public class ETagUtils : IHttpModule
{
 public void Init(HttpApplication application)
 {
 application.PostReleaseRequestState

+=application_PostReleaseRequestState;

 }

 public void Dispose()
 {
 }

 void application_PostReleaseRequestState(object sender, EventArgs e)
 {
 HttpContext.Current.Response.Headers.Remove("ETag");
 }
}

First, the class is implementing the IHTTPModule interface. You need to do this in
order to create a custom HTTP module. Next, an eventhandler is added for the
PostReleaseRequestState. Once this event is fired, remove the ETag from the HTTP
response header. The code will get fired across all requests and will occur every time a
component is requested.

Listing 8.1 A custom module to remove ETags

Figure 8.6 The custom module in
the Surf Store application.

Implement the
IHTTP module

Add an event handler
that will activate on
PostReleaseRequestState

Once the event is fired,
remove the ETag from t
HTTP response headers

https://github.com/deanhume/FastASPNetWebsites
https://github.com/deanhume/FastASPNetWebsites

122 CHAPTER 8 ETags
As a last step, you need to add the custom module to the Web.config file. Figure 8.7
shows the configuration and where to place this file in your Web.config file.

 If you fire up the application and observe the HTTP requests, you might notice
something a little different.

 Figure 8.8 shows the HTTP response headers for an image file the Surf Store appli-
cation is requesting. There are no more ETags! You now send only one header instead
of two and this prevents the cache from being invalidated.

8.4 The results
Using the code in this chapter, you configured and removed ETags from the Surf Store
application. You did this with a custom HTTP module that removes the ETags from all
HTTP header responses. In previous chapters, the Yahoo! YSlow tool issued a grade F
for ETags, meaning the ETags weren’t configured correctly and required some atten-
tion. The Yahoo! YSlow tool has a rule recommending ETag removal in an environment
where a single web application is served across multiple servers. Before making these
changes to the Surf Store application, the performance score on the Yahoo! YSlow tool
came in at 94 out of 100 (figure 8.9).

 If you run the sample application against the updated code in this chapter, the
Yahoo! YSlow tool now reports an improved performance score (figure 8.10).

Figure 8.7 Add the custom HTTP module that removes the ETags to the
Web.config.

Figure 8.8 The HTTP Response
headers show that there are no
more ETags.

Figure 8.9 The Yahoo!
YSlow performance score
before removing ETags.

123Summary
The result in figure 8.10 shows a grade A for configuring ETags, and the overall per-
formance score has jumped to 95 out of 100. Although this only gave you a one-point
increase in your performance score, it’s a step in the right direction. Because you’ve
made such major leaps in performance on the application thus far, further gains in
performance are going to be a lot harder to obtain.

 The performance cycle, discussed in chapters 1 and 6, plays an important role
when you’re optimizing a website. You should choose only the optimizations that are
right for your situation and your development environment. In each chapter you’ve
learned about the performance scores that both Yahoo! YSlow and Google PageSpeed
offer. These tools are fantastic resources for analyzing your website’s performance, but
you should also allow them to help you improve your site’s performance. Implement-
ing performance improvements to your site requires analysis, so don’t make changes
only because these tools tell you to do so!

 This is especially applicable to ETags. Although removing them altogether from
your application may enhance its performance on a web farm, this may not be applica-
ble to your server environment. The key here is to use the Identification step in the
performance cycle. Use the technique that best suits your situation.

8.5 Summary
ETags offer a flexible and efficient way of validating components in a browser’s cache.
In certain circumstances, however, it’s better to remove ETags if extra HTTP requests
are required to validate the component. If your website is run in a web farm environ-
ment or if you load balance your website across multiple servers, each server might
return a different ETag. In this chapter you learned how to remove ETags to prevent
unnecessary HTTP requests from being made.

 You learned how to remove ETags from both ASP.NET Web Forms and MVC applica-
tions with a custom HTTP module. This custom module was fired on each request and
ensured that ETags were removed for each HTTP request that was made. By removing
the ETags you improved the overall performance score of the Surf Store application
and also ensured that your application made full use of the HTTP Expires headers.

Figure 8.10 The Yahoo! YSlow performance score after removing ETags

Content Delivery Networks
Every time you open a browser and request a URL, you’re connecting to a server
that could be located thousands of miles away. Each request you make might have
to make a round-trip to a server that’s halfway around the world! If you host your
website in a data center in New York and a user connects to your site from Sydney,
each HTTP request travels a very long distance. Each round-trip takes time, and
even though it may only amount to milliseconds, it all adds up.

 It’s important to keep in mind who might be accessing your website—and from
where. While the majority of users might be located in your own country, your web-
site can be accessed by users who live elsewhere. A Content Delivery Network
(CDN) allows users to access content on servers that are relatively close to them,
minimizing the distance a request travels and reducing your site’s web page load
times. A CDN improves your chances of serving the same website experience to all
your users, regardless of their location. Happy users = happy developers!

This chapter covers
■ CDN options
■ Domain sharding
■ Developing with a CDN
125

126 CHAPTER 9 Content Delivery Networks
9.1 What is a Content Delivery Network?
Content Delivery Networks, or CDNs as they are better known, are a collection of
server nodes located around the world that contain a clone of your site’s static files.
Because static files such as images, JavaScript, and CSS don’t change often, they’re
ideal for CDNs.

 Figure 9.1 shows a collection of nodes that might represent a typical CDN. Many
CDN services will have a similar collection of nodes around the world. When you
upload your content onto a CDN, it gets cloned and propagated to all the other serv-
ers in its network throughout the world. Each time a user requests one of these files,
they get served the file from the node closest to them. If a user in Sydney requests a
file, they will receive the file from a server in Sydney instead of a server in New York.
This simple change is highly effective in reducing load times.

 The benefits of using a CDN extend far beyond rapid response times. Using a CDN
also reduces the number of requests served from your website, thereby reducing the
amount of bandwidth your site requires. You’ll still get all the benefits of caching and
compression, along with a wider network that reduces the amount of bandwidth con-
sumed by your website. But because your website’s static content will be served from
such a wide network, it also means your website’s load will be well-balanced for your
users, wherever they are around the world. Say, for example, you are about to launch a
new product online and you expect a very high volume of traffic. This large, distributed
network of nodes is much better equipped to handle high simultaneous traffic loads.

 You might think only large companies can afford to use a CDN, but this is not the
case. CDN technology is commercially available to all developers and it’s affordable.
You only pay for the file storage space and outgoing bandwidth that you use. I use an
affordable and easy-to-use commercial CDN for my personal blog.

 In chapter 2, you investigated WebPagetest, an online web performance tool that
produces waterfall charts. WebPagetest is a great tool that allows you to run a free

Figure 9.1 A typical collection of CDN nodes scattered in different locations around the world

127What is a Content Delivery Network?
website speed test from multiple locations around the globe. This is perfect if you
need to test a CDN. I’ll repeat: when you’re developing your site, remember that users
will be accessing your site from all over the world. It’s important for you to give them
the same speed and performance as the users who are close to the hosting server.

 Let’s take a look at how a CDN can improve your worldwide performance by using
WebPagetest. First, navigate to www.webpagetest.org and enter the URL for my per-
sonal blog: www.deanhume.com. Choose a test location in Geneva, Switzerland, and
choose IE8 as your test browser.

 Once the test starts, it will be queued and run from that test location. When the test
finishes running, you’ll be presented with something similar to what you see in figure 9.2.

 What you’re looking for here is the location of the closest CDN node that served
the static content. If you choose the first view (on an empty cache), and navigate to
the request details, it will produce a table similar to figure 9.3.

 In figure 9.3 notice the locations of the requests being served from the CDN. The
test location is in Geneva, Switzerland, and the location of the files being served is
Switzerland. Even though the dynamic content on my site is being hosted in a data-
center in New York, I’m serving the static content to a Swiss user from a computer
in Switzerland!

 Now my Swiss user will receive their content from a server that is located geograph-
ically close to them, which saves a round-trip to a distant shore. Reducing the number
of network hops also reduces latency, meaning you’re able to speed up the time it
takes for a web page to load.

Figure 9.2 A web page performance test for www.deanhume.com against a test location in
Geneva, Switzerland

www.webpagetest.org
www.deanhume.com
www.deanhume.com

128 CHAPTER 9 Content Delivery Networks
9.2 CDN options
There are many CDN options available. Almost all of them are extremely easy to set
up, and you can be up and running in minutes. Table 9.1 shows a few of my favorite
commercial CDNs.

Each commercial CDN offers a competitive pricing structure as well as a dedicated net-
work infrastructure. Because each company has its own requirements, specific CDN
setup techniques will be left for you to discover.

 You shouldn’t feel constrained by my favorites in table 9.1. If you discover other
CDN providers, investigate them, try them out. Go out and get a CDN! It will make a
big difference to your website’s performance around the world. CDN storage is cheap,
so play with a few of them and choose the CDN that best suits your needs and budget.

9.3 Domain sharding
In chapter 6 you learned HTML optimization techniques to help you improve how a
browser renders your web pages. One topic was the browser’s ability to download a web
page’s components in parallel. Most browsers limit the number of parallel connec-
tions opened to a particular domain. Figure 9.4 shows a browser downloading two

Table 9.1 A few more widely known commercial CDNs. Many companies offer an
affordable CDN service.

CDN Name Website

Amazon Cloudfront http://aws.amazon.com/cloudfront/

Rackspace CDN www.rackspace.com/cloud/public/files/

Windows Azure CDN www.windowsazure.com

Akamai CDN www.akamai.com/

CacheFly www.cachefly.com/

EdgeCast www.edgecast.com/

GoGrid CDN www.gogrid.com/products/infrastructure-cdn

Figure 9.3 The request details for deanhume.com against a test location in Geneva, Switzerland

www.rackspace.com/cloud/public/files/
http://aws.amazon.com/cloudfront/
www.windowsazure.com
www.akamai.com/
www.cachefly.com/
www.edgecast.com/
www.gogrid.com/products/infrastructure-cdn

129Domain sharding
images at a time in parallel. To overcome this limitation, you can apply a technique
called domain sharding, which splits resources across domains. If a browser allows a
limited number of connections per domain, add another domain with a CDN. The
CDN is as another domain from which you’re serving static content. Newer browsers
allow a much higher number of parallel downloads, but this technique is still recom-
mended because you get the added benefits of a CDN as well as a higher number of
parallel downloads for older browsers.

 Figure 9.5 contains a snapshot of the network components for Amazon.com. Note
that in the figure the main HTML web page is being downloaded from www.amazon
.com, yet the static files are being downloaded from two separate domains. From a sim-
ple investigation of the network downloads, it seems that the three following domains
are being used to serve the static content from amazon.com:

■ Amazon.com
■ G-ecx.images-amazon.com
■ Z-ecx.images-amazon.com

Figure 9.4 Most browsers are
only able to download from a
limited number of connections
per domain.

Figure 9.5 A snapshot of the network components that are downloaded when you visit
www.amazon.com.

www.amazon.com
www.amazon.com
www.amazon.com

130 CHAPTER 9 Content Delivery Networks
Yahoo! released a study in 2007 that recommends sharding across at least two
domains.1 The study notes that performance starts to degrade above four domains;
that’s why a good compromise is two domains. Maximizing parallel downloads comes
at a cost, and depending on your bandwidth and CPU speed, too many parallel down-
loads can degrade performance.

CDNs are becoming more and more affordable and freely available. You’ll find
many of the top-performing websites today use domain sharding to provide a faster
platform for their static content. If you combine the power of a CDN’s geographical
node base with the browser’s ability to download more efficiently from multiple
domains, your website’s load times will drastically improve. This improvement will be
observed across all browsers, both old and new.

9.4 Developing with a CDN
If you open the Surf Store application and run it against the Yahoo! YSlow web perfor-
mance tool, the performance score for the site is 91 out of 100. This is a good score,
but the tool grades each suggestion separately, so you still score an F for a Content
Delivery Network. I reckon we can do better! Figure 9.6 shows the result that the
Yahoo! YSlow tool produces.

 Adding your website components to a CDN is an easy transition. But depending on
your development environment, it may not always be advisable to work directly off a
CDN while your website is still under development. You may have a development team
that needs to access these files constantly, which can add to your bandwidth bills. It’s
best to work off local copies while in development, then switch to the CDN once the
website is in production. Next, you’ll learn a technique in both ASP.NET MVC and
ASP.NET Web Forms that will allow you to work with a CDN while still in development.

9.4.1 ASP.NET MVC HTML helper for CDN development

You can add an HTML helper to your sample application that contains a switch between
your development content and the production content on a CDN. Whether or not you

1 Tenni Theurer, “Performance Research, Part 4: Maximizing Parallel Downloads in the Carpool Lane,” YUI
blog, April 11, 2007, http://yuiblog.com/blog/2007/04/11/performance-research-part-4/.

Figure 9.6 The Yahoo! YSlow score for the Surf Store application still needs some
improvement.

http://yuiblog.com/blog/2007/04/11/performance-research-part-4/

131Developing with a CDN
work on a team, it can still be beneficial to use development content before moving to
production content when your site goes live. The key to using this technique is match-
ing the local file structure to that of your CDN. This makes it easier to navigate
between folders and allows you to easily map to certain files. Let’s run through an
example that makes use of this technique.

 Begin by adding a key to the Web.config file with the location of the CDN.

<appSettings>
 <add key="CDNUrl" value=" http://8860072f33207da70357-

➥ 90a4bb029bba92ae45972910051b9367

➥ .r47.cf3.rackcdn.com "/>
</appSettings>

You added the CDN URL to the appSettings section of the Web.config file. Next
you’re going to use this CDN URL to build a path for your content, depending on
whether you’re in Release or Debug mode. Start by adding a new class file, called
CdnUtils.cs, to the solution. Figure 9.7 shows the newly created class file in the Solu-
tion Explorer of the sample application.

 Inside this new class, add the code in the following listing.

/// <summary>
/// This extension method is used to generate a URL path
/// for the CDN depending whether or not we are in release
/// or debug mode.
/// </summary>

Listing 9.1 Adding the CDN URL to the Web.config file

Listing 9.2 Using the CDN URL in Debug/Release mode

Figure 9.7 A new class file is
added to the SurfStoreApp
MVC project.

The URL
of the CDN

132 CHAPTER 9 Content Delivery Networks

Retri
CD
fr

Web
/// <param name="helper">The HTML helper that is being used.</param>
/// <param name="contentPath">The path of the content.
/// Normally starts with a~</param>
/// <returns>Returns a full URL based on whether or not in release mode</

returns>
public static MvcHtmlString CdnUrl(this HtmlHelper helper,

➥ string contentPath)
{
 // If in release mode
 #if (!DEBUG)

 // remove the leading "~" character
 if (contentPath.StartsWith("~"))
 {
 contentPath = contentPath.Substring(1);
 }

 // Retrieve the key from the Web.config
 string appSetting = ConfigurationManager.AppSettings["CDNUrl"];
 Uri combinedUri = new Uri(new Uri(appSetting), contentPath);
contentPath = combinedUri.ToString();

 #endif

 // Create the correct URL
 var url = new UrlHelper(helper.ViewContext.RequestContext);

 return new MvcHtmlString(url.Content(contentPath));
}

The code uses the content path that is passed in and updates it with the CDN URL,
depending on whether the code is in Release mode. If you’re still in Debug mode, the
code will run as normal and return the content path that was passed in. Only if you’re
in Release mode will the CDN URL be appended to the content path.

 Finally, update your views to use the new HTML helper method you wrote. Instead
of calling an HTML image tag like so:

You now use:

And that will produce the following HTML when the web page is rendered:

<img src="http://88600723r47.cf3.rackcdn.com/Content/Images/
surfing-homepage.png" />

This HTML helper will allow you to switch easily between the CDN and your local
file storage.

9.4.2 ASP.NET Web Forms helper for CDN development

Whether or not you work in a team environment, it can still be beneficial to use local
content before moving to using CDN content when your site goes live. The key to
using this technique is matching the local file structure to that of your CDN. This

Check if you’re in Release mode.
Return as normal if you are.

The content path will
often get passed in with a
leading ‘~’ sign. You need
to remove it if you append
the CDN URL to it.eve the

N URL
om the
.config

file

Combine the two URLs and
update the content path

Return the new
and updated
content path

133Developing with a CDN
makes it easier to navigate between folders and allows you to easily map to certain
files. You’re about to run through an example using ASP.NET that uses this technique.

 Start by adding a key to the Web.config file with the location of the CDN.

<appSettings>
<add key="CDNUrl" value=" http://8860072f33207da70357-

90a4bb029bba92ae45972910051b9367.r47.cf3.rackcdn.com "/>
</appSettings>

You added the CDN URL to the Web.config file’s appSettings section. Next you’re
going to use the CDN URL to build a path for your content depending on whether
you’re in Release or Debug mode. Start off by adding a new class file called CdnUtils.cs
to the solution. Figure 9.8 shows the newly created class file in the Solution Explorer
of the sample application.

 Inside this new class, add this code.

/// <summary>
/// This extension method is used to generate a URL path
/// for the CDN depending whether or not we are in release
/// or debug mode.
/// </summary>

Listing 9.3 Adding the CDN URL to the Web.config

Listing 9.4 Using the CDN URL in Debug/Release mode

The URL of
the CDN

Figure 9.8 A new class file
is added to the SurfStoreApp
project.

134 CHAPTER 9 Content Delivery Networks

Retri
CD
fr

Web
/// <param name="contentPath">The path of the content.</param>
/// <returns>Returns a full URL based on whether or not in release mode</

returns>
public static string CdnUrl(string contentPath)
{
 // If in release mode
 #if (!DEBUG)

 // remove the leading "~" character
 if (contentPath.StartsWith("~"))
 {
 contentPath = contentPath.Substring(1);
 }

 // Retrieve the key from the Web.config
 string appSetting = ConfigurationManager.AppSettings["CDNUrl"];
 Uri combinedUri = new Uri(new Uri(appSetting), contentPath);
contentPath = combinedUri.ToString();

 #endif

 return contentPath;
}

The code uses the passed in content path and updates it with the CDN URL, depend-
ing on whether or not the code is in Release mode. If you’re still in Debug mode, the
code will run as normal and return the content path that was passed in. The CDN URL
will be appended to the content path only if you’re in Release mode.

 Finally, you need to update your views to use the new helper method that you
wrote. Instead of calling an HTML image tag like so:

You now use:

<img src="<%= SurfStoreApp.Utils.CdnUtils.CdnUrl("Images/
surfing-homepage.png") %>" />

This will produce the following HTML when the web page is rendered:

<img src="http://88600723r47.cf3.rackcdn.com/

➥ Content/Images/surfing-homepage.png" />

By making this simple change, you’re making sure you’re developing and using local
content first; this might save you a hefty CDN bill!

9.5 The results
You have updated the Surf Store application in both solutions (MVC and Web Forms)
to use the new CDN for its static content. When you ran the sample application against
the Yahoo! YSlow tool, the previous performance score came in at 91 out of 100.
Before running YSlow against the sample application again, you need to tell YSlow the
name of your CDN. The tool doesn’t have a known list of CDNs it uses to validate

Check if you’re in Release mode. If you’re
not, then return as normal.

The content path might get
passed in with a leading
‘~’ sign. You need to
remove it if you append
the CDN URL to it.

eve the
N URL

om the
.config

file

Combine the
two URLs and
update the
content pathReturn the new and updated

content path

135The results
against, but it does give you the option to add your own CDNs to the list. In figure 9.9,
the YSlow tool has detected that content is being served from two servers. In this case,
you’ll add the CDN but nothing else from the local host, as this would most likely be
our hosting server.

 Once the CDN has been added to the list and the tool is rerun, the performance
score improves. Figure 9.10 shows you now have an overall performance score of 99
out of 100! The CDN rule suggestion has gone from an F to an A.

 If you run the Surf Store website against the Google PageSpeed tool, you’ll get a
similar result. Figure 9.11 shows a performance score of 99 out of 100! This is pretty
impressive considering we’ve taken this website from a starting score of 57 to a score
of 99 out of 100.

Figure 9.9 The latest YSlow performance result. The YSlow tool gives you the ability to add your own
CDNs to a list of approved CDNs .

Figure 9.10 The YSlow performance score after moving the content onto a CDN

136 CHAPTER 9 Content Delivery Networks
9.6 Summary
Every time you open a web page, you could be making a round-trip to a server halfway
around the world to retrieve the required components to load the page. These round-
trips take time, and not surprisingly, the farther away you are from the hosting server,
the longer it will take to download the web page components. You can improve this
delay with a CDN.

 In this chapter you’ve learned about the benefits of using a CDN to serve static
components to your users from a server that is geographically closer to them. Instead
of making a round-trip to a server that could be many miles away, your users will
receive content from a server node that is a lot closer. You’ve learned about domain
sharding and how you can use it to overcome the browser’s limits when it comes to
downloading multiple resources in parallel. By using an extra domain for your site,
the browser is able to download more components in parallel. A CDN can also be a
great way to add an extra domain to your application that will help with domain shard-
ing. In this chapter we implemented a technique in the Surf Store application that
allowed you to easily switch between the content on a CDN and the local content while
your site is in development. This technique will hopefully save you money on your
CDN bandwidth bills.

 Our Surf Store application now has an overall performance score of 99 out of 100
across both the Google PageSpeed and Yahoo! YSlow tools. Not bad considering we
started off with a lowly 57 out of 100. The overall load time of the page has been cut in
half and the total page weight was also reduced significantly. In the next part of this
book, we shift our focus toward server-side code and look at ways that we can leverage
the power of the server to further improve page performance.

Figure 9.11 The Google PageSpeed score after moving the static content to a CDN.

Part 3

ASP.NET–
specific techniques

Until now, the focus of this book has been on front-end performance and
why the Performance Golden Rule plays a major part in improving page load
times. In part 3, you’ll look deeper into the internals of the ASP.NET frame-
work and see how you can harness its features to improve the performance of
your applications.

 In these final chapters, you’ll look at both ASP.NET MVC and ASP.NET Web
Forms and understand the nuances that each framework might offer and how
you can configure your application for optimal performance. As you begin to
focus your attention on the back-end code, you may notice that identifying bottle-
necks in your code isn’t easy.

 You will discover profiling tools to help you pinpoint exact lines of code that
may be slowing down your application. You will learn how to integrate a free pro-
filer into both ASP.NET MVC and ASP.NET Web Forms applications.

 In chapter 12, you will cover data caching and how it can be implemented and
used effectively. The .NET framework has built-in support for caching that you can
use to cache frequently accessed data so as to limit the load on your servers.

 You will review the Surf Shop application that has been used throughout this
book and look at the performance of the application as a whole. You will be sur-
prised to learn that you managed to halve the load time of certain pages using
the techniques that we have built on in each chapter.

Tweaking ASP.NET MVC
performance
According to the Performance Golden Rule, 80 to 90% of end-user response time is
spent on the front end, and so far we’ve been focusing our efforts on optimizing
front-end code. The Surf Store application had a very poor end-user response time
originally, but you’ve optimized it over the course of this book until you cut its
response time in half! But, what happens when your application continues to run
slowly despite having a highly optimized front end? Sometimes you can’t avoid the
fact that something in the back-end code is affecting your application’s performance.

 In this chapter, you’re going to shift your focus from front end-specific tech-
niques to ASP.NET MVC-specific techniques. (Chapter 11 will focus on ASP.NET Web
Forms performance.) We’ll use a little fine-tuning to squeeze precious milliseconds
out of your ASP.NET MVC application and we’ll begin to scrutinize the framework
more closely. When you create a new ASP.NET MVC project in Visual Studio, it’s

This chapter covers
■ Fine tuning ASP.NET MVC
■ Using view engines
■ Release mode versus Debug mode
■ The importance of a favicon
■ Utilizing a code profiler
139

140 CHAPTER 10 Tweaking ASP.NET MVC performance
filled with loads of useful coding helpers that make your life as a developer easier.
You’re about to learn tips and tricks you can apply to your ASP.NET MVC application
that will help it run more efficiently. Aside from improved page load times, you’ll also
reduce the memory footprint on your servers, which is exactly what you need if your
site experiences a high level of traffic.

 You’ll also use a web page profiler to help you identify bottlenecks and areas for
improvement. This profiling tool is different from the tools we’ve used so far because
it will integrate with the back-end code and pinpoint the exact pieces of code that may
be causing bottlenecks in your application. The tool is open source and easy to use.
You’ll be set up and profiling in about 5 minutes!

10.1 Using only the view engines that you need
By default, ASP.NET MVC ships with two view engines: the Web Forms view engine and
the Razor view engine. When you create a new MVC project, you’re given the choice of
view engines (figure 10.1).

 By default, both engines are included in the application startup. ASP.NET MVC
resolves named views by searching first for files that match the Web Forms view
engine’s naming conventions. If your MVC application can’t find a view, the error mes-
sage in figure 10.2 might be a familiar sight.

 Each time MVC looks for a view, it searches all those locations until it finds what
it’s looking for. In figure 10.2 you’ll see that the Razor view is the fifth view to be
searched for after ASP.NET MVC fails to find the first few views. Extra lookups take
time, but if you remove all other view engines that are available at application
startup, and are left with only the view engine that you need, MVC doesn’t have to

Figure 10.1 When you create a
new ASP.NET MVC project, you
have a choice of view engines.

141Release mode vs. Debug mode
waste time searching all the other locations. If you intend to use only one type of view
engine throughout your code, make sure there’s only one view engine available for
the application to search. Fortunately, ASP.NET MVC is configurable and lets you update
your view engines.

 In your application, begin by opening up the Global.asax file.

protected void Application_Start()
{
 ViewEngines.Engines.Clear();
 ViewEngines.Engines.Add(new

➥ RazorViewEngine());

 AreaRegistration.RegisterAllAreas();

 WebApiConfig.Register(GlobalConfiguration.Configuration);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

The code starts by clearing out all the available default engines. Next, add the view
engine you’re using in the application. In this case it’s Razor, but it could easily be the
Web Forms view engine or a custom view engine.

 By making this small change to your application, you’ve reduced the number of
locations the MVC routing system needs to check before it finds a match and you’ve
reduced the time it takes for a view to be returned to the user.

10.2 Release mode vs. Debug mode
If you’re about to deploy your website to a production environment, one of the most
important things you can do is to make sure it’s been compiled and deployed in
Release mode. You may be familiar with the compilation configuration drop-down
in Visual Studio, shown in figure 10.3.

 As the name states, Debug mode is meant for debugging and is meant to make
your life as a developer a lot easier. Visual Studio’s built-in debugger allows you to

Listing 10.1 Remove unused view engines in your Global.asax file

Figure 10.2 By default, an ASP.NET MVC
application must search across multiple
view engine locations to find a view.

Add this code to the Global.asax file to
remove all other view engines. You start
by clearing all view engines.

Add the view engine you want to
use. In this case it’s Razor.

142 CHAPTER 10 Tweaking ASP.NET MVC performance
pause and step through code so you can debug and visualize the values in your appli-
cation. Unfortunately, Debug mode isn’t ideal for code performance. When your
code is running in Debug mode, a number of nonoptimal things are happening:

■ Code executes more slowly because additional debug paths are enabled.
■ More memory is used within the application at runtime.
■ ASP.NET MVC takes longer to resolve a view name.
■ Certain timeouts are disabled, so you’re blind to any long-running operations

that should have timed out.
■ The bundling and minification code you wrote in chapter 5 won’t be enabled

because it must run in Release mode.

In Debug mode, ASP.NET MVC has optimized the view resolution to simplify develop-
ment. MVC iterates through the views and attempts to resolve them every time your
code renders a view. This makes your life as a developer a lot easier because the devel-
opment environment responds immediately to any changes you’ve made. But in
Release mode, everything is optimized for performance. MVC resolves a view more
efficiently because it caches the result of the lookup. A new view is cached automati-
cally when it’s resolved in Release mode, dramatically speeding up the response time
since the code doesn’t need to perform another disk read.

 If you’d like to know whether your application is running in Debug mode, check
the Web.config file. You might notice something similar to the next listing.

<system.web>
 <httpRuntime targetFramework="4.5" />
 <compilation debug="true"

➥ targetFramework="4.5" />
 <pages>
 <namespaces>
 <add namespace="System.Web.Helpers" />
 <add namespace="System.Web.Mvc" />

Listing 10.2 A Web.config file with debug=true attribute

Figure 10.3 Visual Studio allows you to publish your code in two different
modes: Debug and Release.

The debug=true setting
indicates the code is
running in Debug mode.

143The importance of a favicon
 <add namespace="System.Web.Mvc.Ajax" />
 <add namespace="System.Web.Mvc.Html" />
 <add namespace="System.Web.Routing" />
 <add namespace="System.Web.WebPages" />
 </namespaces>
 </pages>
 </system.web>

It isn’t ideal to run your application in Debug mode in a production environment.
The preferred way to switch to Release mode is to deploy your application with Visual
Studio and publish it in Release mode. You could also remove debug=true from your
Web.config file so the application pool in IIS will recycle and the application will then
run in Release mode.

 This setting is highly important. If you’re running your application in Debug mode
in a production environment, it’s almost definitely running slower than necessary, so
make sure you publish your application in Release mode.

10.3 The importance of a favicon
You may be familiar with the 16 x 16 image that appears on the address bar when you
browse a website. This tiny image, known as a favicon, is often used to display the logo
of an organization or an image you would associate with the brand you’re viewing. Fig-
ure 10.4 shows an example of two favicons in the Google Chrome browser.

 By default, most modern browsers look for a favicon, so turning it off isn’t an
option. The browsers look in the root of the application for the path /favicon.ico
and if they don’t find it, they return a 404 error. Fortunately, these 404 errors occur
silently on your server and aren’t shown to your users. You might only pick up the
error with the correct error logging tools on the server. How does this affect your
application? The 404 error page is larger than a favicon, so the client spends time
downloading an error page which is larger and takes more time to download than the
favicon itself. Forgetting to add a favicon might cause extra disk I/O and computation,
all of which adversely affect response times and increase server load.

 One of my most memorable stories about favicons is the story behind the success
of Instagram. During the early stages of Instagram, the website started to receive up to
25,000 sign-ups a day! The back-end engineers noticed that the error logs on the
server had a lot of 404 errors coming from a missing favicon. These 404 errors were
causing unnecessary disk reads that were negatively impacting the server’s load. As
soon as the favicon was added, the 404 errors stopped and a huge burden was instantly
lifted off the server. Instagram has over 100 million registered users today. Imagine
the impact a missing favicon would have on their servers now.

Figure 10.4 The active tab shows the favicon for the Surf Store application.
The inactive tab shows the favicon for the Wikipedia website.

144 CHAPTER 10 Tweaking ASP.NET MVC performance
It’s best to include a favicon in the root of your MVC application, but if you choose to
include the favicon in another location, you may notice an interesting error in your
error logs.

The controller for path /favicon.ico does not implement IController.

Fortunately, this error will occur in the background and won’t be shown to the user.
Because of the nature of MVC, instead of looking for a normal icon file in the root of
your application, the ASP.NET MVC routing will be used. The favicon.ico is regarded as
a path and the MVC routing will look for a controller called favicon.ico first. Now your
application is taking a double performance hit. Instead of performing a simple I/O
operation, the icon request is hitting code and making the application work harder
than it needs to.

 If you still choose not to include a favicon in the root of your application, the fol-
lowing listing contains code that tells ASP.NET MVC to ignore the route.

public class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Surf",
 action = "Index",
 id = UrlParameter.Optional }
);

 // Ignore the favicon
 routes.IgnoreRoute("favicon.ico");

 }
}

The code will ignore the route and save that extra bit of work being done on the
server. Although you’ve made sure you aren’t producing tons of 404 errors on the server,
and extra work isn’t being performed by the server in vain, this line of code doesn’t
necessarily make your website faster. The code makes sure the server won’t waste its
resources executing code and looking for a file unnecessarily, helping you keep your
application efficient and running smoothly, but you may still want to consider adding
a favicon to your application. This won’t give you an instant performance benefit, but
instead a long-term performance gain that will ensure that high traffic won’t affect the
overall performance of your application.

 Unfortunately, these favicon problems extend to other types of icons. A wide range
of mobile devices that browse your website will look for a new type of icon called a
web clip icon. Mobile devices use web clip icons when a user wants to add your web

Listing 10.3 Ignoring the favicon in the RouteConfig.cs file

Add this line of code to
ignore the favicon.

145The importance of a favicon

application or web page link to their device’s Home screen. This problem is similar to
the favicon issue because most mobile devices will look for an apple-touch-icon.png
file in the root of your application. Its name would have you think only Apple devices
look for these icons, but Android devices also look for web clip icons in the root of
your application. If a web clip icon isn’t there, you’ll get a 404 error. The following
HTML may be familiar to you:

<link rel="apple-touch-icon" href="apple-touch-icon.png">

Unfortunately, it gets worse. Some devices will look for different sizes of web clip icons
as shown in the next listing.

<link rel="apple-touch-icon-precomposed"
href="apple-touch-icon-precomposed.png">
<link rel="apple-touch-icon-precomposed"
href="apple-touch-icon-72x72-precomposed.png">
<link rel="apple-touch-icon-precomposed"
href="apple-touch-icon-114x114-precomposed.png">
<link rel="apple-touch-icon-precomposed"
href="apple-touch-icon-144x144-precomposed.png">

Much like the favicon, you can include these web clip icons in your HTML to make
sure devices know where to find them, but you could also ignore the web clip icons in
your RouteConfig.cs file.

public class RouteConfig
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Surf",
 action = "Index",
 id = UrlParameter.Optional }
);

 // Ignore the favicon
 routes.IgnoreRoute("favicon.ico");

 // Ignore web clip icons
 routes.IgnoreRoute("apple-touch-icon-precomposed.png");
 routes.IgnoreRoute("apple-touch-icon-72x72-precomposed.png");
 routes.IgnoreRoute("apple-touch-icon-72x72.png");
 routes.IgnoreRoute("apple-touch-icon-57x57-precomposed.png");
 routes.IgnoreRoute("apple-touch-icon-57x57.png");
 routes.IgnoreRoute("apple-touch-icon-144x144-precomposed.png");
 routes.IgnoreRoute("apple-touch-icon-144x144.png");

Listing 10.4 Common web clip icons

Listing 10.5 Ignoring web clip icons in the RouteConfig.cs file

It’s best to
include every
web clip
icon size.

146 CHAPTER 10 Tweaking ASP.NET MVC performance
 routes.IgnoreRoute("apple-touch-icon-114x114-precomposed.png");
 routes.IgnoreRoute("apple-touch-icon-114x114.png");
 routes.IgnoreRoute("apple-touch-icon.png");
 }

You could choose to include all these types of web clip icons in your application, or
you could tell MVC it doesn’t need to look for them. Either way, it’s important to think
about web clip icons because extra lookups might be causing extra disk I/O and com-
putation, all of which adversely affect response times and increase server load.

10.4 Utilizing a code profiler
In the first two parts of this book, you have taken an application from a dismally per-
forming front end to a highly optimized one. You may get to a point in your applica-
tion’s development where you’re happy with the front-end code’s performance, but
for some reason the website is still running slowly and the pages are taking longer
than they should to load.

 This back-end load time may be evident in a waterfall chart of your web page. Fig-
ure 10.5 shows a waterfall chart for a web page with a bottleneck occurring in the
back-end code.

 Diagnosing the problem can be extremely frustrating and you may often find your-
self looking in the wrong place. The only way to find the bottlenecks in your back-end
code is to use a profiling tool. Many profiling tools are available, and here are a few of
the most well-known:

■ DotTrace—www.jetbrains.com/profiler/
■ ANTS performance profiler—http://mng.bz/C9kl
■ Telerik JustTrace—http://mng.bz/ibG3
■ MiniProfiler—http://miniprofiler.com

One of my favorite ASP.NET MVC profiling tools is MiniProfiler. It’s a free download
and allows you to profile your MVC application as well as any database queries, Entity
Framework queries, Linq2SQL queries, and individual pieces of code.

There are quite a
few web clip icons!

Figure 10.5 A waterfall chart shows that of all the components, the HTML takes the longest to return.
This is a good indication that you need to look at the back-end code to improve page load times.

http://mng.bz/C9kl
http://mng.bz/ibG3
www.jetbrains.com/profiler/
http://miniprofiler.com

147Utilizing a code profiler
As you’ve gone through each chapter, you’ve improved the Surf Store application’s
performance step-by-step. When you look at the sample code, you’ll notice a folder
for almost every chapter in this book. Each folder contains Before and After folders,
as you can see in figure 10.6, repeated from chapter 3.

 In this chapter, you’re going to set up the Surf Store application so we can profile
the code with MiniProfiler. The sample code for this chapter has changed slightly
because I’ve updated it to use a local database instead of retrieving the images from
disk. As you’re focusing on the back-end code in these next chapters, I wanted to get as
close to a real-world coding scenario as possible. To create a challenge for the profiler, I
purposely injected code to make the website perform slowly when hitting the database.

NOTE It’s important to disable HTTP caching and output caching when profil-
ing your website with MiniProfiler. You’re looking to identify code bottlenecks
and not front-end performance bottlenecks, so it’s best to disable them. HTTP
caching will only skew the results upon reloading the page. Refer to chapter 4 if
you’d like to disable HTTP caching temporarily for your web application.

Let’s start profiling. First, we need to add the MiniProfiler library to the sample appli-
cation by downloading the library from http://miniprofiler.com, or by using the
NuGet package manager in Visual Studio 2012. If you aren’t familiar with NuGet, it’s a
free open source package management system for the .NET platform. Instead of
searching for an open source library on a website, NuGet contains a list of thousands
of free libraries that easily integrate and download into your application. It’s very
handy because you can quickly add a library to your application without having to visit
multiple websites; the libraries are all in one place. Navigate to your Solution Explorer
and right-click References. Figure 10.7 shows this in action.

 Next, search for MiniProfiler in the search bar and the NuGet package manager
will locate the MiniProfiler package for you. Click Install and the required dependen-
cies will be added to your application. Figure 10.8 shows the NuGet package manager
and the interface that allows you to easily locate and download the libraries you need
to add to your application.

 You’re almost ready to begin profiling, but first we need to set up a few
things. Open the Layout Razor view and add a bit of code that will allow you to
see your profiling results. Add the code in listing 10.6 immediately before the
closing body tag.

Figure 10.6 The folder structure of each chapter. Each folder will also
contain both an ASP.NET MVC version of the application and an ASP.NET
Web Forms version.

http://miniprofiler.com
http://miniprofiler.com

148 CHAPTER 10 Tweaking ASP.NET MVC performance
@using SurfStoreApp.Utils
@using System.Web.Optimization;
@using StackExchange.Profiling;

<!DOCTYPE html>
<html lang="en">

Listing 10.6 Add UI components to the Layout view

Figure 10.7 Right-click References
in the Solution Explorer to add a
NuGet package to your application.

Figure 10.8 The NuGet package manager UI

Add a reference in the
Layout view to the
MiniProfiler library.

149Utilizing a code profiler
<head>
 <meta charset="utf-8">
 <title>Surf Store Application</title><link rel="shortcut icon"

href="@Html.CdnUrl("~/Content/Images/favicon.ico")" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="">
 <meta name="author" content="">
 @Styles.Render("~/Styles/Css")
</head>
<body>

 @RenderBody()
 <hr>
 <footer class="footer">
 <p class="pull-right">Back to top</p>
 <p>Surf Store 2012</p>
 </footer>
 </div>
 <!--/.fluid-container-->
 @MiniProfiler.RenderIncludes()
 @Scripts.Render("~/Scripts/Js")
</body></html>

The code has been shortened to keep it simple. You’re including code that will write
out the CSS and JavaScript that will output the profiling results to the web page.

 Next, you need to update the Global.asax file and initialize the MiniProfiler so it
will start profiling when your application fires up. The next listing contains code
you’ll need to add to the Global.asax file.

using StackExchange.Profiling;

namespace SurfStoreApp
{
 public class MvcApplication : System.Web.HttpApplication
 {
 protected void Application_BeginRequest()
 {
 // Start the MiniProfiler
 if (Request.IsLocal)
 {
 MiniProfiler.Start();
 }
 }

 protected void Application_EndRequest()
 {
 MiniProfiler.Stop();
 }

 protected void Application_Start()
 {

Listing 10.7 Start the profiler in the Global.asax file

Writes out the CSS and
JavaScript that renders
the profiling results.

Add a reference to the
MiniProfiler library.

MiniProfiler is designed to run in
production code. You can decide
whether to hide or show the profiling
information with this simple check.

If the HTTP request that executes
this code is in a local environment,
start the MiniProfiler.

Stop the
profiler.

150 CHAPTER 10 Tweaking ASP.NET MVC performance
 register routes, etc.
 }
 }}

The code we’ve added only is executed if the application is running locally. It checks
for the presence of a local HTTP request and if true, it starts MiniProfiler. This check is
added for security reasons, in case you deployed your application to a production
environment with the profiling code still enabled. You wouldn’t want anyone to see
this sensitive information. It’s also worth mentioning that MiniProfiler is designed for
production use. A line of code in the previous listing uses Request.IsLocal to see if
the code is being run in a local environment. As an added security measure, that line
of code could just as easily be User.IsAdmin || Request.IsLocal.

 MiniProfiler allows you to choose the specific parts of your application that you’d
like to profile. Instead of profiling the entire application, you can specify a piece of
code to profile. It’s lightweight and you choose the areas you wish to focus on. The
next snippet shows a profiling block wrapped around a piece of code.

var profiler = MiniProfiler.Current;
using (profiler.Step("Important code"))
{
 // Some important code goes here

}

This code snippet contains a reference to the current instance of MiniProfiler. It is
then used in a using statement to profile a section of the code. You can have as
many of these profiling blocks as you wish, and you can even use them in
downstream methods. It’s also important to label the profiling block so you know
where to pinpoint your code during profiling. Without labels you can easily become
lost in the profiling blocks.

 A good page to profile in the Surf Store application is the Products page. It’s
retrieving a list of products based on a category from the database. This bit of code
might be inefficient and cause the page to load slowly. Start, as shown in the
following listing, by implementing the profiling blocks around the code you wish to
examine further.

using StackExchange.Profiling;

public class SurfController : Controller
{
 public ActionResult Product(string category)
 {
 // Check if a category was passed in first.
 if (!string.IsNullOrWhiteSpace(category))
 {
 List<ProductDetail> productDetails = new List<ProductDetail>();
 var profiler = MiniProfiler.Current;
 // it's ok if this is null

Listing 10.8 The Action on the MVC controller

Add a reference to the
MiniProfiler library.

151Utilizing a code profiler

 of
 the

 a

ls
base.

 using (profiler.Step("Retrieve Products"))
 {
 // Retrieve the products for the category
 ProductLogic productLogic = new ProductLogic();
 productDetails =

productLogic.GetProductDetailByCategory(category);
 }

 // Loop through the results and add to our model
 List<ProductModel> productModel = new List<ProductModel>();
 using (profiler.Step("Build Model"))
 {
 foreach (ProductDetail product in productDetails)
 {
 productModel.Add(new ProductModel
 {
 ImageDescription = product.ProductDescription,
 ImageUrl = product.ImageUrl
 });
 }
 }

 // Return the populated model to the view
 return View(productModel);
 }

 // Incorrect parameters were passed in, so return nothing.
 return View();
 }
}

The listing contains the Surf Store application’s code that reads a list of images from a
database. This code might not be running as efficiently as it should and using Mini-
Profiler will give you a chance to identify any inefficient code. Notice that the code
contains profiling blocks that are wrapped around methods and individual lines of
code. These profiling blocks can be named, which makes it easier to identify the code
at a later stage. MiniProfiler will automatically tell you how long it takes for actions to
execute and views to render, and the profiling blocks are useful if you wish to investi-
gate specific pieces of code manually.

 That’s it. You’re ready to fire up the application and begin profiling. If you navi-
gate to the Products page of the Surf Store application, you’ll notice profiling details
in the top-left corner of the screen. Click the ms duration in the corner and you’ll be
presented with profiling details similar to those in figure 10.9.

 In figure 10.9, notice that the profiler also details the full-page lifecycle, so if any
intensive JavaScript runs on the front end, you’ll be able to identify that, too. The
results show the profiling blocks we added in listing 10.8, and you’ll notice that the
Retrieve Products profiling block took seven seconds to execute. The front-end code
seems quite efficient in comparison and took no time at all to respond. Before profil-
ing, I purposely injected a piece of code into the SurfStoreApp.Data project that will
block the current thread for around five seconds. Using MiniProfiler helped me to
identify where the bottleneck lies.

Wrap a profiling block
around individual pieces
code. You can also name
profiling blocks to make
them easier to locate at
later stage. This block
profiles the image detai
retrieved from the data

This profiling
block profiles
the MVC model
created from
the image
details.

152 CHAPTER 10 Tweaking ASP.NET MVC performance
After removing the blocking thread, MiniProfiler immediately reflects these changes.
Figure 10.10 shows the Retrieve Products profiling block is running a lot quicker now,
and your overall page load time has been reduced significantly.

 Using MiniProfiler, you were able to identify easily a problem area in the code. The
profiling blocks can be chained together and used in downstream methods, so you
should be able to drill down continuously until you find the source of the problem in
your code. By using a code profiler, you’re able to take any guesswork out of your per-
formance issues.

10.4.1 MiniProfiler for database profiling

One of the powerful features of MiniProfiler is its ability to profile databases, which can
be pretty handy if you need to dig a little deeper into your application. It has built-in sup-
port for any kind of DbConnection, and it supports Entity Framework and Linq-2-SQL.

 There may be a few inefficient queries running on your database, or you may
find you’re executing the same query multiple times with different parameters.
Database profiling quickly allows you to find queries you may be able to batch. The
easiest way to use this feature is to use a factory to return your connection, as shown
in listing 10.9.

Figure 10.9 MiniProfiler results capture the full page cycle as well as internal code.

153Utilizing a code profiler
using StackExchange.Profiling;

public static DbConnection GetOpenConnection()
{
 var connection = CreateRealConnection();

 return new
StackExchange.Profiling.Data.ProfiledDbConnection(connection,
MiniProfiler.Current);
}

If you use this connection when querying the database now, you’ll find that MiniPro-
filer will respond and display useful debugging information. Figure 10.11 shows
detailed information about a query being executed multiple times.

 This detailed information about your SQL queries can be very useful when identify-
ing bottlenecks in your code. It’s easy to use the same query twice by mistake, but
MiniProfiler has made it easy to pinpoint the issue.

Listing 10.9 A factory for returning a MiniProfiler DbConnection

Figure 10.10 MiniProfiler’s results after the code update.show improved performance.

Add a reference to the
MiniProfiler library

This can be an SqlConnection
or SqliteConnection

Wrap the connection with a profiling
connection that tracks timings

154 CHAPTER 10 Tweaking ASP.NET MVC performance
10.5 Summary
Although 80 to 90% of end user response time is spent on the front end of a website,
you may have poorly optimized code running behind the scenes of your application. In
this chapter, you shifted focus and looked at different techniques that will enable you to
fine-tune your ASP.NET MVC application to squeeze out that last bit of performance.

 Often you’ll need to closely scrutinize the ASP.NET framework. Many standard
out-of-the-box projects might contain unnecessary settings, such as too many view
engines, that could add extra overhead to your application.

 Running your code in Release mode is a vital part of deploying your application to
a production environment. Running your code in Debug mode means your code isn’t
running at its best. This is okay if you’re still developing your website, but it isn’t ideal
if your website is on a live server. A web application running in Release mode is opti-
mized for performance.

 Quite often you’ll also need to dive a little deeper into the mechanics of your
application and use a profiling tool to identify any bottlenecks. Free tools such as
MiniProfiler easily integrate with ASP.NET MVC and can provide useful information
that will allow you to pinpoint the exact source of your performance problems.

 This chapter provided a good insight into the deeper workings of the ASP.NET MVC
framework. By applying these fine-tuning improvements, you can ensure that your
MVC application is running at its peak performance. In the next chapter, you’ll learn
techniques to fine-tune an ASP.NET Web Forms application. You’ll also implement the
MiniProfiler tool that will help you identify any problem areas in your website.

Figure 10.11 MiniProfiler
results that show duplicate
SQL queries being executed.

Tweaking ASP.NET
Web Forms performance
In the previous chapter, we started looking deeper into the performance of an
ASP.NET MVC application. In this chapter, we begin to look at specific tech-
niques for ASP.NET Web Forms performance. (Chapter 10 focused on ASP.NET
MVC performance.)

 As you’ve progressed through this book, you’ve cut the load time of the Surf
Store application in half. That is pretty impressive, considering it was all done using
front-end optimization techniques. But what happens when you’ve optimized the
front end of your website as much as possible, yet your web pages still load slowly?
This is a good indication that you should look at the code that powers the applica-
tion. Although the performance of a website can be drastically improved by focus-
ing on the front end, there will undoubtedly come a time when a back-end code
issue will affect your application.

 In this chapter we’re going to look at ASP.NET Web Forms-specific techniques
that will help improve your page load times as well as the overall performance of

This chapter covers
■ Improving HTML
■ Changing your settings
■ Utilizing a code profiler
155

http://mng.bz/C9kl
http://mng.bz/C9kl
http://mng.bz/C9kl
http://mng.bz/C9kl

156 CHAPTER 11 Tweaking ASP.NET Web Forms performance
your application. Then we’ll look at a tool that will help you identify bottlenecks or
inefficient code in your application. This profiling tool is different from the tools
you’ve used so far, because it will integrate with the back-end code and pinpoint exact
pieces of code that may be causing bottlenecks.

11.1 HTML improvements
A lot of handy features have been built into ASP.NET that make your life as a developer
easier. Although these features are great, they don’t always generate performance-
optimized HTML. In previous versions of ASP.NET, the framework modified the client-
side IDs to identify each unique control. This tended to create HTML that left you with
the ID of each control that you defined in the markup with something that looks like
"ctl00_MasterPageBody_ctl01_Textbox1".

 At first sight, this doesn’t seem like an issue, but as more nested controls were
added to a page, the IDs of these controls became longer. This inevitably led to
bloated pages. If you’ve ever tried to write client-side JavaScript against one of these
pages, you’ll know the frustration this can cause: each control generated a unique ID
at runtime, so you couldn’t identify a control until the page was displayed.

 Apart from making JavaScript development easier, these HTML improvements also
bring another benefit: performance. In chapter 6 you learned a few of the perfor-
mance benefits HTML5 can bring to your application, reduced page size being one of
them. If you have a large and complex web page, making sure the client-side IDs are
shorter and easier to identify also reduces overall page weight.

 One of the key concepts we’ve been focusing on in this book is reducing the size of
the request a web page makes; this includes the size of the web page itself. Remember,
by using less HTML you’re also using fewer bytes when a page loads.

 In ASP.NET 4.5 Web Forms, every control contains a property called ClientID-
Mode that selects the behavior of the client-side ID. You have a choice of four possi-
ble values:

■ AutoID—This is the default mode and will generate any client IDs the way that it
has in previous versions of ASP.NET. You’ll notice client IDs that are similar to
"ctl00_MasterPageBody_ctl01_Textbox1".

■ Predictable—This mode is used when the framework needs to ensure unique-
ness in a predictable way. It trims any "ctl00" ID strings from the client ID.

■ Static—This mode puts full control in the developer’s hands: it will generate
an ID with the name of your choosing.

■ Inherit—This looks to the control’s parent to get its value for ClientID-
Mode. It tells the control to defer to the parent container control’s naming
behavior mode.

Let’s look at the output the different ClientIDModes generate. The following listing
shows the markup in Visual Studio before you’ve rendered the page.

http://mng.bz/C9kl
http://mng.bz/C9kl
http://mng.bz/ibG3
http://mng.bz/ibG3

157HTML improvements

ClientID

is
Inheri
prod

shorter I
still in

the
con
co
<asp:TextBox ID="TextBox1" ClientIDMode="AutoID"

➥ runat="server" />

<asp:TextBox ID="TextBox2" ClientIDMode="Inherit"

➥ runat="server" />

<asp:TextBox ID="TextBox3" ClientIDMode="Predictable"

➥ runat="server" />

<asp:TextBox ID="TextBox4" ClientIDMode="Static"

➥ runat="server" />

As you can see from the code, changing how you render the textbox ID is easy. The
HTML in listing 11.1 will render and display like the HTML in figure 11.1.

 In figure 11.1, the textbox with the shortest and easiest to understand ID is
TextBox4, which was generated with a Static ClientIDMode. Notice the name prop-
erty on the textbox is still a lot longer than it needs to be. Unfortunately, this is built
into ASP.NET Web Forms and it isn’t a good idea to remove it. ASP.NET uses the name
property to locate the Postback control and to route Postback data and events.

 As it stands, you’ve managed to reduce the length and simplify the ID of a server-
side control. Apart from making it a lot easier to read the control’s ID, you have also
reduced the number of bytes on the web page.

 I know this may seem like a trivial amount, but it can add up if you have a lot of
server-side controls on a web page. I took a popular e-commerce website that uses
ASP.NET Web Forms, looked at the HTML from a standard product display page, and
compared the results before and after shortening the client IDs. The original page
weight was 163 KB; it was reduced to 137 KB once the updates were made. Shortening
the names of the input fields saved 26 KB. I changed nothing else!

 Making changes to existing HTML sounds easy in theory, but it’s a lot harder in
practice because there can be loads of dependencies to the controls’ IDs. If you’re
about to embark on a new project, do it the right way from the start. If you’re devel-
oping new areas on an existing site, remember that the weight of the client IDs can
quickly add up.

Listing 11.1 Working with ClientIDMode in Visual Studio

Notice the ClientIDMode property
on this textbox. AutoID is the
default method of generating IDs
and it will do so the same way as
previous versions of ASP.NET.

The
Mode

 set to
t. This
uces a
D, but
cludes
parent
tainer
ntrol’s
name.

Predictable mode is used
when the framework must
make sure the string is
unique. It will keep the
parent container
control’s name.

The ClientIDMode is set to Static. This mode puts the control in
your hands and makes sure the naming is exactly as you want it.

Figure 11.1 Generating different IDs with ClientIDMode on an ASP.NET control

158 CHAPTER 11 Tweaking ASP.NET Web Forms performance
11.2 Web.config settings
There are a few simple changes you can make in the Web.config file of your ASP.NET
Web Forms application. A wide range of settings can be finely tuned and tweaked in
the Web.config file to improve the performance of your application. Knowing when
and where to apply these changes is what’s important.

11.2.1 Publishing your application in Release mode

If you are about to deploy your website, one of the most important things you can do
is make sure it’s been compiled and deployed in Release mode. You may be familiar with
the Configuration Manager drop-down available in Visual Studio, shown in figure 11.2
and repeated from chapter 10.

 As the name states, Debug mode is for debugging and is meant to make your life as
a developer a lot easier. Visual Studio’s built-in debugger allows you to pause and step
through code in order to debug and visualize the values in your application. Unfortu-
nately, Debug mode isn’t ideal for code performance. When your code is running in
Debug mode a number of nonoptimal things are happening:

■ Code executes more slowly because additional debug paths are enabled.
■ Much more memory is used by the application at runtime.
■ Certain timeouts are disabled, so you’re blind to any long-running operations

that should have timed out.
■ The bundling and minification code you wrote in chapter 5 won’t be enabled

because it runs in Release mode.

A quick way to see if your application is running in Debug mode is to look at the
Web.config file. You might notice something similar to the next listing.

<system.web>
 <compilation debug="true" targetFramework="4.5" />
 <httpRuntime targetFramework="4.5" />

Listing 11.2 A Web.config file with debug=true attribute

Figure 11.2 Visual Studio allows you to publish your code in two different
modes: Debug and Release.

Indicates the code
is running in
Debug mode.

159Web.config settings
 <pages>
 <namespaces>
 <add namespace="System.Web.Optimization" />
 </namespaces>
 <controls>
 <add assembly="Microsoft.AspNet.Web.Optimization.WebForms"

 ➥ namespace="Microsoft.AspNet.Web.Optimization.WebForms"
 tagPrefix="webopt" />
 </controls>
 </pages>
</system.web>

The listing contains a snippet of settings from a typical ASP.NET Web Forms Web.con-
fig file. The debug=true setting indicates the code is running in Debug mode. It’s not
ideal for your application to be running in Debug mode in a production environ-
ment. The preferred way to switch to Release mode is to deploy your application using
Visual Studio and publish in Release mode. You can also remove debug=true from
your Web.config or replace it with debug=false. The application pool in IIS will recy-
cle and the application will then run in Release mode.

 This setting is important! If you’re running your application in a production envi-
ronment in Debug mode, it’s almost definitely running slower than necessary, so
make sure you publish your application in Release mode.

11.2.2 Disable tracing if it’s not used

Tracing is a great feature that’s been built into the ASP.NET framework. It enables you
to track the diagnostics of an application to the page’s output by sending information
to the requesting browser. Optionally, you can view this information from a separate
trace viewer that displays trace information for every page in an ASP.NET web applica-
tion. Tracing comes in handy when you need to investigate unwanted errors or results
while ASP.NET processes a page request, but you’ll pay a price.

 Tracing adds performance overhead and might expose private information, so you
should enable it only while an application is being analyzed.

 To disable tracing, turn it off in your Web.config file. The code in the next listing
shows how simple it is to disable tracing in your application.

<system.web>
 <compilation debug="true" targetFramework="4.5" />
 <!-- Disable Tracing -->
 <trace enabled="false" requestLimit="10" pageOutput="false" />
 <httpRuntime targetFramework="4.5" />
. . . .
</system.web>

After setting enabled=false on the <trace> tag, you won’t be affected by the negative
performance hits that tracing can cause.

Listing 11.3 Disabling tracing in Web.config

Set enabled=false on the
<trace> tag to disable tracing.

160 CHAPTER 11 Tweaking ASP.NET Web Forms performance
11.2.3 Disable session state

A handy built-in feature of the ASP.NET framework is session state which allows you to
store and retrieve values into a session for a user. As the user navigates through the
pages in your web application, you can easily retrieve these values from the session.
This feature is handy because HTTP is a stateless protocol, meaning a web server treats
each HTTP request for a page as an independent request. By default, the server retains
no knowledge of variable values used during previous requests. You may find yourself
in a situation where it’s necessary to store certain values for the duration of a user’s
session. I personally have a bit of a love/hate relationship with this feature. It’s useful,
but you can find yourself dumping values into the session state unnecessarily, causing
it to become bloated.

ASP.NET session state is enabled by default for all ASP.NET applications. Although
this is useful and you can start using it right away, you’ll pay the price in memory, even
if you don’t use it. Session state requires memory to store the values and it can also be
time consuming when you store or retrieve values from memory.

 You can disable session state in your application in a number of ways. If you aren’t
using session state on certain pages, you can and should disable it on your web form
with the following code:

<%@ Page EnableSessionState="False" %>

You may also find yourself in a situation where you may be reading from session
state, but not writing to it. You can also set session state to ReadOnly, shown in the
following code:

<%@ Page EnableSessionState="ReadOnly" %>

The preceding code sets the session state for a page to ReadOnly, but if you aren’t
using session state, you may want to disable it across the entire application. You can
disable it easily in your Web.config file:

<sessionState mode="Off" />

Minimizing the use of session state increases the overall performance of your appli-
cation, particularly under high traffic. Although it may not increase the load time
of a web page immediately, it will definitely improve the health of your application
as a whole.

11.2.4 Disable ViewState when it’s not needed

ViewState is a technique used by an ASP.NET web page to persist changes to the state
of a Web Form across Postbacks. The ASP.NET framework will encode a serialized
object as a binary Base64-encoded string and add it to the page. The HTML in the
next listing might look familiar.

161Response.Redirect vs. Server.Transfer
<form method="post" action="./" id="SearchSubmit">
 <div class="aspNetHidden">
 <input type="hidden" name="VIEWSTATE" id="VIEWSTATE"

➥ value="KM5WEgrkiFRaM24e4FVPXchpZmHIOyncVAz7s+47/

➥ Yu7Ou5P8KLvQuQUeYoaZ0VkubS0232pl7dWPZxeZHQOg+Mk

➥ L6m63RooXh/0AU+wKoA=" />
 </div>

. </form>

The HTML markup in the listing shows how a hidden field is added to each page in a
web application. This technique has been around since the early days of ASP.NET and
continues to be a powerful and simple way to persist small pieces of data. ViewState
allows state to be persisted with the client and it doesn’t require cookies or server
memory to save this state. However, the Base64-encoded string that is included in a
web page can sometimes add an overhead of about 30 percent to your web pages. The
time it takes for the object to get serialized also comes at a small cost.

ASP.NET ViewState is an important part of maintaining state in your application.
Without it, certain pages and controls on your website won’t function properly. Pro-
ceed cautiously and disable it only when it’s absolutely not needed.

 A page that might not need ViewState might be one that displays information and
does not post back to itself. To disable ViewState, include the following code in your
page directive:

<%@ Page EnableViewState="false" %>

Disabling ViewState on pages that don’t need it improves the performance of those
pages significantly. The extra data added to the page will also add to the weight of the
HTML returned from the server, and by removing it, you’re making sure your web
page stays light.

11.3 Response.Redirect vs. Server.Transfer
In chapter 2 we discussed the HTTP response codes a server can return to the browser.
When you use Response.Redirect() in your code to redirect a user between pages on
your website, a 302 HTTP response code is returned from the server. A 302 HTTP sta-
tus code indicates to the browser that it should perform a temporary redirect. A
Response.Redirect() will send you to a new page and update the address bar with
the new page. Unfortunately, Response.Redirect() sends an extra request to the
server, which could be avoided.

 An option is to use Server.Transfer() instead. Server.Transfer() helps reduce
server requests because it happens without the browser knowing anything. When the
browser requests a web page, the content of another page is returned. Instead of tell-
ing the browser to redirect, it changes the focus on the web server and transfers the
request. You don’t get as many HTTP requests coming through, which eases the pres-
sure on your web server and makes your applications run faster.

Listing 11.4 ViewState inside an HTML page

A hidden field is added
to the web application
with a Base64-encoded
string. This hidden
field is used to persist
state across Postbacks.

162 CHAPTER 11 Tweaking ASP.NET Web Forms performance
 With different methods come different challenges. Using Server.Transfer()
doesn’t change the URL in the address bar of the browser. This can be quite confusing
during debugging, and because the URL doesn’t change, a user might bookmark the
wrong page. You also can’t use Server.Transfer() to redirect to a page on an exter-
nal site, it will only redirect within the same application.

 If used in the right circumstances, Server.Transfer() can be quite powerful and
will reduce the number of HTTP requests coming to and from your server. This will
definitely lighten the load on your server and improve the overall performance of
your web application.

11.4 Utilizing a code profiler
In parts 1 and 2, we concentrated solely on front-end performance and improving the
page load times in a web application. In those chapters, you learned that the biggest
gains in terms of page load times can be made on the front end because the changes
are scalable, easy to implement, and relatively fast—wait time is how long it takes for
the components in a page to download. You took an ASP.NET Web Forms application
from a dismal page load time to a speedy, high-performance load time.

 But what happens when you’ve optimized the front end of your website as much as
possible, but you still experience a long delay when waiting for the page to load? It
may be time to take a closer look at your website’s back-end code. Figure 11.3 shows a
waterfall chart for a web page with a bottleneck in the back-end code.

 Trying to diagnose the bottleneck can be extremely frustrating and you may find
yourself looking in the wrong place. The only way to find the bottlenecks in your back-
end code is to use a profiling tool. There are many profiling tools that will help you
profile and locate the source of your performance issue or memory leak.

Figure 11.3 A waterfall chart shows that of all the components, the HTML takes the longest to return.
This is an indication that you need to look at the back-end code to improve page load times.

163Utilizing a code profiler
These are a few of the better-known tools:

■ DotTrace—www.jetbrains.com/profiler/
■ ANTS performance profiler—http://mng.bz/C9kl
■ Telerik JustTrace—http://mng.bz/ibG3
■ MiniProfiler—http://miniprofiler.com

One of my favorite tools to use when profiling an ASP.NET website is the MiniProfiler tool.
In chapter 10, you saw how it can be used to profile an ASP.NET MVC application. The tool
is flexible and built to be used against ASP.NET Web Forms applications, too. It’s a free
download and allows you to profile your Web Forms application as well as any database
queries, Entity Framework queries, Linq2SQL queries, and individual pieces of code.

 In this chapter, you’re going to set up the Surf Store application so you can profile
the code with MiniProfiler. The sample code for this chapter is located in the chapter 11
folder. The code for chapter 11 has changed slightly because I’ve updated the sample
application to use a local database instead of retrieving the images from disk. As
you’re focusing on the back-end code now, I wanted to get as close to a real-world sce-
nario as possible. To create a challenge for the profiler, I purposely injected code to
make the website perform slowly when hitting the database.

 Let’s start profiling. First, you need to add the MiniProfiler library to the sample
application. You can download the library from miniprofiler.com, or by using the
NuGet package manager in Visual Studio 2012. NuGet is a free, open source package
management system for the .NET platform. Instead of searching for an open source
library on a website, NuGet contains a list
of thousands of free libraries that easily
integrate and download into your applica-
tion. It’s handy because it allows you to add
a library to your application without hav-
ing to visit multiple websites; the libraries
are all in one place and are easily search-
able. Navigate to your Solution Explorer
and right-click References. Next, click
Manage NuGet Packages. Figure 11.4 shows
this in action.

 Next, search for MiniProfiler in the
search bar and the NuGet package man-
ager will locate the MiniProfiler package
for you. Click Install and the required
dependencies will be added to your appli-
cation. Figure 11.5 shows the NuGet pack-
age manager and the interface that allows
you to easily locate and download the librar-
ies you want to add to your application.

Figure 11.4 To add a NuGet package to your
application, right-click References in the
Solution Explorer.

www.jetbrains.com/profiler/
http:// mng.bz/C9kl
http:// mng.bz/ibG3
http://miniprofiler.com

164 CHAPTER 11 Tweaking ASP.NET Web Forms performance
Open the Master page and add a piece of code that allows you to see the code profile
results. Add the code in the next listing to the <head> tag of your HTML.

<%@ Import Namespace="SurfStoreApp.Utils" %>

<!DOCTYPE html>
<html lang="en">
<head>
 <asp:ContentPlaceHolder runat="server" ID="HeadContent">
 <meta charset="utf-8">
 <title>Surf Store Application</title>
 <link rel="shortcut icon"
href="<%=
FileVersionUtils.BuildVersionedFileName("Images/favicon.ico") %>" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="description" content="">
 <meta name="author" content="">
 <%= Styles.Render("~/Styles/Css")%>
 <%= StackExchange.Profiling.MiniProfiler.RenderIncludes() %>
 </asp:ContentPlaceHolder>
</head>
<body>

.

<body>
</html>

The example has been shortened to keep it simple, but you’re including code that will
write out the CSS and JavaScript required to output the profiling results to the web page.

Listing 11.5 Add UI components to the Master page

Figure 11.5 The NuGet package manager UI

Add the code that will write out
the CSS and JavaScript required
to render the profiling results.

165Utilizing a code profiler
 Now you need to update the Global.asax file and initialize the MiniProfiler so it
starts profiling when your application fires up. This listing shows the code you need to
add to the Global.asax file.

using StackExchange.Profiling;

public class Global : HttpApplication
{
 protected void Application_BeginRequest()
 {
 if (Request.IsLocal)
 {
 MiniProfiler.Start();
 }
 }

 protected void Application_EndRequest()
 {
 MiniProfiler.Stop();
 }
}

The code you’ve added makes sure the profiler is executed only if the application is
running locally. If it detects a local HTTP request, it starts the MiniProfiler. This check
is added for security reasons, in case you deployed your application to a production
environment with the profiling code still enabled; you wouldn’t want anyone to see
this sensitive information.

 MiniProfiler is lightweight and lets you choose which parts of your application
you’d like to profile. Instead of profiling the entire application, you can profile a par-
ticular piece of code. The following code snippet shows a profiling block wrapped
around a piece of code.

var profiler = MiniProfiler.Current;
using (profiler.Step("Important code"))
{
 // Some important code goes here
}

The code snippet contains a reference to the current instance of the MiniProfiler. It’s
then implemented in a using statement to profile a section of the code. You can have
as many of these profiling blocks as you wish, and you can even use them in down-
stream methods. It’s also important to label the profiling block so you know where to
point your code during profiling. Without labels you can easily become lost in the
numerous profiling blocks!

 With regards to the Surf Store application, a good page to profile would be the
Products page. It’s retrieving a list of products based on a category from the database.
This bit of code might be inefficient and cause the page to load slowly. Start by imple-
menting the profiling blocks around the code you wish to examine further.

Listing 11.6 Start the profiler in the Global.asax

Add a reference to the
MiniProfiler library.

If the HTTP request that executes
this code is in a local environment,
start the MiniProfiler.

Stop the profiler when the
request is complete.

166 CHAPTER 11 Tweaking ASP.NET Web Forms performance
using StackExchange.Profiling;

public partial class Product : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 // Get the category from the querystring
 string category = Request.QueryString["category"];

 // Check if we received a category
 if (!string.IsNullOrWhiteSpace(category))
 {
 // Display the images
 List<ProductDetail> productsForCategory =
 new List<ProductDetail>();
 var profiler = MiniProfiler.Current;
 using (profiler.Step("Retrieve Products"))
 {
 ProductLogic productLogic = new ProductLogic();
 productsForCategory =

productLogic.GetProductDetailByCategory(category);
 }

 using (profiler.Step("Build HTML"))
 {
 // Loop through each product and build the HTML that
 // we are going to return to the web page
 foreach (ProductDetail product in productsForCategory)
 {
 phProductImages.Controls.Add(
 BuildHtml(category,
 product.ImageUrl,
 product.ProductDescription));
 }
 }
 }
 }
}

The sample code is from the Surf Store application that reads a list of images from a
database. It might not be running as efficiently as it should, and the MiniProfiler will
help you identify any inefficient code. You’ll notice the code in the previous listing
contains profiling blocks that are wrapped around methods and individual lines of
code. They’re particularly useful if you want to manually investigate specific pieces
of code. MiniProfiler will automatically tell you how long it takes for actions to exe-
cute and views to render.

 That’s it. You’re now ready to fire up the application and begin profiling. If we nav-
igate to the Products page of the Surf Store application, you’ll notice profiling details
in the top-left corner of the screen. Click the millisecond duration message in the
upper-left corner and you’ll see MiniProfiler profiling details (figure 11.6).

Listing 11.7 Profiling the Product.aspx page

Add a reference to the
MiniProfiler library.

Wrap a profiling
block around
individual pieces of
code. You can also
name the profiling
blocks to make them
easier to identify and
come back to at a
later stage. This block
profiles image details
being retrieved from
the database.

This block
profiles the
creation of
the HTML
that displays
the images.

167Utilizing a code profiler
Notice how the profiler also details the complete page lifecycle, so if any intensive
JavaScript runs on the front end, you’ll be able to identify that, too. The results also
show the profiling blocks we added in listing 11.7.

 You’ll notice in figure 11.6 that the Retrieve Products profiling block took over four
seconds to execute. The front-end code is quite efficient in comparison and took no time
at all to respond. Before starting the profiling, I purposely injected a piece of code in the
SurfStoreApp.Data project that will block the current thread for about five seconds.

 If you concentrate on this bottleneck and improve any inefficient code, you should
be able to improve the page load time considerably.

NOTE It’s important to disable HTTP caching and output caching when you
profile your website with MiniProfiler. You want to identify back-end code
bottlenecks, not front-end performance bottlenecks. HTTP caching will only
skew the results when you reload the page!

After you remove the inefficient code, MiniProfiler immediately reflects these changes.
Figure 11.7 shows how the Retrieve Products profiling block is running a lot quicker
now, and your overall page load time has been reduced significantly.

 You were able to identify a problem area in the code easily with MiniProfiler. The
profiling blocks can be chained together and used in downstream methods, so you
should be able to drill down until you find the source of your code problems. By using
a code profiler, you’re able to take any guesswork out of your performance issues.

Figure 11.6 MiniProfiler results. They capture the full page cycle as well as internal code.

168 CHAPTER 11 Tweaking ASP.NET Web Forms performance
11.5 Fixing the issue
The most important part of finding your website’s code bottlenecks is being able to fix
the problem. Using a profiler allows you to narrow the list of possibilities and identify
the root cause of the bottlenecks, but it doesn’t show you how to fix them.

 Each performance issue requires its own solution. Because of the breadth of
issues developers face, you’ll be required to call on your own problem-solving skills
and expertise.

 In this book, I’ve concentrated on front-end performance issues and given you
the tools to identify problem code in your application. The best way to fix an issue
buried deep in code is to keep going back to the performance cycle. It may seem
like an overwhelming task, but the process of improving your website’s load times
and performance can be broken down into four key stages. The performance cycle
is a summary of the entire website improvement process. Its four stages are a guide
to a process which can be applied to any website, regardless of the specific rules
and techniques you’ll apply, helping you realize performance potential and faster
load times.

 As you go through the four key stages of the performance cycle, you’ll notice the
improvement each adjustment to your code will make. Experimenting with different
code techniques is often the best way to improve a slow running part of your website.
You’ll be able to easily decide if you’re heading in the right or wrong direction by
monitoring and tracking for any signs of change.

Figure 11.7 MiniProfiler results after the code update

169Summary
11.6 Summary
In this chapter you shifted your focus toward the back-end code of a web application.
In the first two parts of this book we concentrated on the front-end performance of
web applications, but there may come a time when your application runs slower than
expected even after you’ve performed front-end optimization.

 By default, ASP.NET Web Forms projects created in Visual Studio are not optimized
for performance. A lot of features enabled by default might not be necessary and
could cause extra overhead in your application. Since ASP.NET 4, there have been
HTML improvements that allow you to provide cleaner HTML that will reduce the
overall weight of your web pages.

 This chapter highlighted the importance of publishing your applications in
Release mode. If your web application is running in Debug mode, your code will exe-
cute slower and your application will use more memory. When you deploy your site to
a production environment, make sure it’s running in Release mode.

 We investigated different settings in the Web.config file and examined the pros
and cons of disabling certain features to improve performance. Under the correct cir-
cumstances, disabling tracing, session state, or ViewState can speed up your applica-
tion’s page load times significantly. By fine-tuning certain settings, you can make sure
your Web Forms application is running at its peak performance.

 When looking to optimize your back-end code, you will often need to go one step
further and use a profiling tool to pinpoint exact bottlenecks in your code. Imple-
menting tools such as MiniProfiler will allow you to profile your code and identify any
performance issues.

 This free tool integrates easily with ASP.NET Web Forms and can provide you with
useful information that will allow you to pinpoint the exact source of your perfor-
mance problem.

 In the next and final chapter of this book, we take a look at object caching. It
involves caching frequently used data in order to speed up your application’s page
load times.

Data caching
In the same way that you might keep milk in your fridge until it reaches its expiration
date, as I said in chapter 4, browsers can cache information about a website for a set
duration of time. When your milk is old, you buy new. After data expires, a browser
will fetch the updated version. Much like caching data on a user’s browser with HTTP
caching, as discussed in chapter 4, you can do the same thing with frequently used
information on the server. By caching data on the server, you can easily store infor-
mation retrieved from the database, or perhaps even an expensive method.

 Data caching is the process of storing frequently used data on the server to
fulfill subsequent requests. If some data doesn’t change often, store it on the
server so you don’t have to make an expensive call to the database the next time
you request it.

 Data caching is one of my favorite server-side techniques for speeding up an
application and making it more robust. The .NET Framework has great built-in sup-
port for data caching and it can be applied to a web application in no time at all.

This chapter covers
■ System.Runtime.Caching
■ What should I cache?
■ Notes on distributed caching
171

172 CHAPTER 12 Data caching
This chapter runs through setting up data caching in a web application and shows
how easy it is to use this great feature.

12.1 Server-side data caching
This may be the final chapter in this book, but it covers one of the most important
aspects of the performance of a web application: server-side data caching. Most appli-
cations on the web will work with frequently used data that isn’t updated all that often.
This makes it a prime candidate for data caching. For example, you may retrieve a list
of country names from the database that doesn’t change often, or you may retrieve a
list of default settings that only changes once every six months. These chunks of data
are perfect candidates for data caching, and you can speed up your application con-
siderably by adding them into a cache.

 Figure 12.1 shows caching can be applied to layers in the application. If used
effectively in each layer in your application, caching can make your application
extremely fast.

 Fortunately, caching doesn’t extend only to databases. You could cache the result
of a call to a web service or even a long-running code calculation. If code is called fre-
quently but the returned result doesn’t change often, it’s ideal for caching. Because
the data is retrieved from memory, it’s often returned instantly.

12.2 System.Runtime.Caching
The .NET Framework has a built-in set of classes that fall under the System.Run-
time.Caching namespace. This namespace contains types that let you implement an
in-memory cache in your .NET Framework applications. The cache object enables you
to store everything from simple name/value pairs to more complex objects, such as
datasets and entire web pages. The classes are also extensible and if you’re looking for
more flexibility, they allow you to create custom caching providers. The built-in classes
that fall under the System.Runtime.Caching namespace are easy to implement and
can produce impressive results.

 You’ve been working with the Surf Store application throughout this book. Now
you will learn how easy it is to add caching to any ASP.NET application and improve its
web page load times. To get started, you need to add a reference to the System.Run-
time.Caching library in your project.

Figure 12.1 Caching can be
applied to different layers of
your application.

173System.Runtime.Caching

In figure 12.2, a reference to the System.Runtime.Caching namespace is added to start
caching in the sample application. Because you’re going to add caching in the sample
application’s data layer, I’ve added the reference to the SurfStoreApp.Data project.

 A few simple methods like the ones shown in the next listing are enough to get
started caching.

ObjectCache cache = MemoryCache.Default;

/// <summary>
/// Adds the item into cache.
/// </summary>
/// <param name="key">The key used as a reference</param>
/// <param name="objectToCache">The object to cache.</param>
public void AddItem(string key, object objectToCache)
{
 _cache.Add(key, objectToCache, DateTime.Now.AddHours(6));
}

/// <summary>
/// Retrieves the item from cache
/// based on the key passed in.

Listing 12.1 Basic methods to add and retrieve items from cache

Figure 12.2 A reference to System.Runtime.Caching added to your application

Initializes a new
instance of the
MemoryCache class.

Accepts the key
and the object
to cache as
parameters.
Adds the object
into the cache
for 6 hours.

174 CHAPTER 12 Data caching
/// </summary>
/// <param name="key">The key.</param>
/// <returns></returns>
public object RetrieveItem(string key)
{
 object objectRetrievedFromCache = cache.Get(key);

 return objectRetrievedFromCache;
}

The first line initializes a new instance of the MemoryCache class, and you reference to
the default MemoryCache instance. The MemoryCache object is flexible and allows mul-
tiple instances inside a single application.

 A method allows you to add an item into cache with a key, which you use to retrieve
the object from cache when required. It’s worth mentioning that MemoryCache is not
as strict as dictionary-based collections; if you request an item key that doesn’t exist,
you’ll get a null rather than a runtime error.

 When you’re building your application, you might come across a scenario in which
similar objects have similar names. If that happens, consider building a dynamic key
string to identify your objects. If you try to add an object into the cache and a key with
the same name already exists, the new object will overwrite the older one.

 The code in the previous listing is effective, but it could be rewritten so it’s easier
to reuse and so it takes a dynamic key into account. The following listing is a more
effective data caching class you can use throughout your application.

public class DataCaching
{
 static readonly ObjectCache Cache = MemoryCache.Default;

 /// <summary>
 /// Retrieve a cached item
 /// </summary>
 /// <typeparam name="T">Type of cached item</typeparam>
 /// <param name="key">Name of cached item</param>
 /// <returns>Cached item as type</returns>
 public static T Get<T>(string key) where T : class
 {
 if (Cache.Contains(key))
 {
 return (T)Cache[key];
 }

 return null;
 }

 /// <summary>
 /// Insert value into the cache using
 /// appropriate name/value pairs
 /// </summary>
 /// <typeparam name="T">Type of cached item</typeparam>
 /// <param name="objectToCache">Item to be cached</param>

Listing 12.2 Adding and retrieving items from cache

Retrieves the
object from cache
based on the
passed in key.

Initialize a new
instance of the
MemoryCache
class.

Reusable method
retrieves an item
from cache
based on a key. It
also returns it in
the specified
typed, so there’s
no need to cast
farther down
the chain.

Check to see if the cache
contains the object
based on the key.

175The sample application
 /// <param name="key">Name of item</param>
 public static void Add<T>(T objectToCache, string key) where T : class
 {
 Cache.Add(key, objectToCache, DateTime.Now.AddDays(30));
 }

 /// <summary>
 /// Remove item from cache
 /// </summary>
 /// <param name="key">Name of cached item</param>
 public static void Clear(string key)
 {
 Cache.Remove(key);
 }

 /// <summary>
 /// Gets all cached items as a list by their key.
 /// </summary>
 /// <returns></returns>
 public static List<string> GetAll()
 {
 return Cache.Select(keyValuePair => keyValuePair.Key).ToList();
 }
}

This code can be used throughout your application to cache data and retrieve differ-
ent object types from cache. It contains a set of useful dynamic methods and should
cover the basic caching needs of an application.

12.3 What should I cache?
You can easily store the results of any expensive or long-running operations that aren’t
likely to change in memory, so they can be retrieved at a later time. The kinds of data
you would store in memory might include

■ Database lookups
■ Expensive calculations that are done in code
■ The data from any I/O read (XML file, text file, and so on)
■ The result of a web service call

In chapter 4 you investigated HTTP caching and the flexibility of IIS for storing data
that doesn’t change often in the client’s browser. Remember, if data is cached it’s
refreshed only after it expires. Bear this in mind when designing your application,
because caching data that changes frequently can cause headaches when you’re
debugging your application.

12.4 The sample application
In this chapter, you’re going to apply caching to the Surf Store application you’ve
been optimizing throughout this book. The Products page of the sample application
retrieves product information from the database to display on the Products page. This
information doesn’t change often and is a prime candidate for data caching.

Use this to add an object into
the cache. The hardcoded

value is 30 days, but you can
change that value in your

own application.

Remove the item from
cache based on the key.

Return a list of all
the items in cache.

176 CHAPTER 12 Data caching

a
 I’ve chosen to add caching in the project’s Logic layer. You could easily choose to
add caching in the Data layer if the GetProductDetailByCategory method is reused
frequently. By adding the caching on the Data layer, it will allow you to share the
cached information with other methods in the application. The following listing
shows the code in action.

public class ProductLogic
{
 /// <summary>
 /// Gets the product detail by category.
 /// </summary>
 /// <param name="category">The category.</param>
 /// <returns></returns>
 public List<ProductDetail> GetProductDetailByCategory(string category)
 {
 // Build a cacheKey
 string cacheKey = "GetProductDetailByCategory-" + category;

 // Try and retrieve the data from the cache
 List<ProductDetail> productDetails = DataCaching

➥ .Get<List<ProductDetail>>(cacheKey);

 if (productDetails == null)
 {
 // Retrieve from the database
 ProductData productData = new ProductData();
 productDetails = productData

➥ .GetProductDetailByCategory(category);

 // Add into cache
 DataCaching.Add(productDetails, cacheKey);
 }

 return productDetails;
 }
}

The code builds a dynamic key that caches the data and retrieves it at a later stage.
Because the key is based on the passed-in category and the method name, it should be
unique every time.

 Look in the cache with the cache key to see if any data is associated to that key. If
there’s nothing, retrieve the data from the database and add it into cache so it can be
retrieved from cache next time.

 If the key does find something in cache, return the cached data instead of going to
the database. Retrieving the data from cache instead of making a call to the database
is significantly faster because you’re retrieving directly from memory in the applica-
tion. This technique can be applied throughout your application to any long-running
operations that take place during execution.

Listing 12.3 Using the cache in the sample application

Build a dynamic key
you can use to store

the object against.

Use the key to retrieve
the object from cache.

Check if the object isn’t
in cache and is null.

If no objects are in
cache, retrieve the dat
from the database.

Add the data from
the database into
cache for next time.

Return the result.

177Notes on distributed caching
12.5 Notes on distributed caching
If you run your application in a load-balanced environment with multiple servers, you
may need to assess the way you cache your data. In this chapter’s example code, all the
data in the cache will be stored within the application itself. If your application is run-
ning across multiple servers, you’d have a near duplicate copy of the cached data on
each server. This can become a problem on your server if the memory grows quite
large or if the cached data on each server is out of sync.

 To avoid these pitfalls consider using distributed caching instead. Distributed
caching allows the cache to span multiple servers so it can grow in size and in transac-
tional capacity.

 In figure 12.3, the left side shows how each web server has its own individual copy
of the cache. The right side shows the distributed cache with a combined cache. Both
servers retrieve data from the same cache instead of accessing their own individual
cache. Your servers are more efficient when storing data this way because they’re shar-
ing the combined cache. A distributed cache also provides high availability and scal-
ability. If either of the web servers goes down, you’ll still have the cached data available
for the other web servers.

 Distributed caching options available today include

■ Windows Azure Caching—www.windowsazure.com/en-us/services/caching/
■ Memcached—memcached.org
■ NCache—www.alachisoft.com/ncache/
■ Redis—http://redis.io/

Most of these distributed caching solutions work in a similar way to the System.Runtime
.Caching namespace. They allow you to store a chunk of data using a simple key/value
pair that can easily be retrieved at a later stage.

Figure 12.3 Distributed caching across multiple web servers versus caching on
individual web servers

http://www.alachisoft.com/ncache/
http://www.windowsazure.com/en-us/services/caching/
http://redis.io/
www.memcached.org

178 CHAPTER 12 Data caching
 If you’re looking to grow your application and make sure it’s scalable and perform-
ing efficiently, consider distributed caching as an alternative to the standard caching
in the System.Runtime.Caching namespace.

12.6 Summary
In this chapter you learned about in-memory caching in the .NET Framework. The
System.Runtime.Caching namespace provides a useful tool for caching frequently
accessed data. Instead of continually executing expensive I/O operations, the data
returned from these operations can be stored in a cache that allows you to instantly
retrieve the data. This cache can be used for common operations such as database
lookups and expensive calculations, or for accessing data from a simple I/O read.
Using caching in your application will make sure it’s scalable as well as extremely fast.

 You also briefly investigated implementing a distributed cache if you’re running
your application across multiple servers. Distributed cache can be an effective way to
make sure your application performs at its best if it spans multiple web servers.

12.7 Look at how far you’ve come!
You’ve completed the final chapter in this book. You’ve covered a lot of information
about different web performance optimization techniques. It’s time to reflect on the
improvements that you’ve made.

 The simple changes you added to the sample application at the end of each chap-
ter gave you better performance scores, but how much did they influence the speed of
the site? In order to compare the load times of the application before and after mak-
ing the optimizations, I uploaded the sample application to a web server and noticed
some interesting results. If you would like to test the differences for yourself, please
check out the following links:

■ Before optimization—http://before.azurewebsites.net/
■ After optimization—http://after.azurewebsites.net/

Most of the tests I’ve been running until now have been against my local machine and
didn’t simulate a real-world scenario. In order to show the differences between the
two samples, I needed to upload them and test them against a real server. I ran both
of these websites against the Webpagetest tool and selected a video to highlight dif-
ferences in load time. The image in figure 12.4 was generated as a side-by-side com-
parison of the load times of these two sample applications. As you’ll notice, the
image shows that 1 second into the page load, the optimized version is already show-
ing content to the user. The unoptimized version hasn’t shown any content and didn’t
do so until around 2 seconds in.

 Figure 12.5 shows how the optimized version has completed loading at 3.5 sec-
onds, but the unoptimized version isn’t close to loading all its content yet!

 The unoptimized version of the site takes around 7 seconds to load, while the opti-
mized version completed in 3.5 seconds; this is a remarkable improvement. You can
see some even more interesting statistics in table 12.1.

http://before.azurewebsites.net/
http://after.azurewebsites.net/

179Look at how far you’ve come!
I encourage you to try this same test for yourself. The two versions of the website are
freely available for you to compare. Fire up www.webpagetest.org and see the differ-
ences for yourself. The optimized version of the Surf Store application is a shining
example of what a high performance website should be!

 If you’ve been following along with each chapter, you’ll have learned how easy it is
to transform the load times of your web pages. All the techniques you covered in this
book are simple changes you can easily apply to your websites today. There is no better
time to start improving your website’s speed than now!

Table 12.1 A detailed comparison of the Surf Store application before any optimizations
and after you’ve applied optimization techniques.

Before optimization After optimization

HTTP Requests 24 13

Page Weight 875.72 KB 672.75 KB

Total Load Time 7 seconds 3.5 seconds

Figure 12.4 A comparison of the
optimized sample application versus
the unoptimized one. Note that after
1 second, the unoptimized result
(top) hasn’t even started showing
content to the user.

Figure 12.5 The optimized
version finished loading within
3.5 seconds, but the unoptimized
version (top) is still loading
content.

www.webpagetest.org

appendix

A.1 Setting up your local machine as a web
development server with IIS
Setting up your local machine to use IIS as a web development server is easy
and takes no time at all. Although IIS Express can perform the same tasks that
IIS can on a Localhost, many developers prefer to run and debug their web-
sites in a Localhost environment. You no longer need admin access to your
machine for web development and setting up virtual directories is a lot easier.
This guide will walk you through setting up your local machine to use IIS as a
web development server.

 Assuming that you have IIS installed on your machine, you’ll need to take the
following steps to get started:

1 Click Start > Control Panel.
2 Click System and Security > Administrative Tools.
3 In the Administrative Tools window, double-click Internet Information Ser-

vices (IIS) Manager.

This opens a window similar to the one in figure A.1.
 Next, right-click Sites and choose Add Web Site. This opens a window similar to

the one in figure A.2.
 This window allows you to select a site name as well as set the physical path of

your website. Once you’ve completed these details, click OK and you should be able
to start working immediately. Open your web browser, navigate to http://localhost,
and you’ll be able to see your website!
181

http://localhost
http://localhost

182 APPENDIX A appendix
Figure A.1 Internet Information Services (IIS) Manager

Figure A.2 Set up the site name and physical location of your website.

183Useful links referenced in this book
A.2 Useful links referenced in this book
The lists which follow figure A.2 show tools, mentioned throughout the book, used to
improve and monitor the performance of your websites.

PROFILING TOOLS

■ Profiling tool—http://yslow.org/
■ Google PageSpeed tool—https://developers.google.com/speed/pagespeed/
■ MiniProfiler—http://miniprofiler.com
■ Online web page profiling—www.webpagetest.org/
■ Firebug—www.getfirebug.com
■ HTTPWatch—www.httpwatch.com/
■ Fiddler—www.fiddler2.com/fiddler2/

IMAGE OPTIMIZATION TOOLS

■ Smush.it—http://smush.it/
■ Kraken—http://kraken.io/
■ Pngcrush—http://pmt.sourceforge.NET/pngcrush/
■ Jpegtran—http://jpegclub.org/jpegtran/
■ Visual Studio Extension—http://mng.bz/2MR6
■ YUI online compressor—http://refresh-sf.com/yui
■ Online Google Closure compiler—http://closure-compiler.appspot.com

BEFORE AND AFTER RESULTS

■ Before adding any page optimizations—http://before.azurewebsites.net/
■ After adding page optimizations in this book—http://after.azurewebsites.net/

To learn more about managing your IIS server, the Microsoft IIS website is packed with
useful resources. Please refer to www.iis.net/learn.

www.webpagetest.org/
www.getfirebug.com
http://mng.bz/2MR6
www.httpwatch.com/
www.fiddler2.com/fiddler2/
www.iis.net/learn
http://yslow.org/
https://developers.google.com/speed/pagespeed/
http://miniprofiler.com
http://smush.it/
http://kraken.io/
http://pmt.sourceforge.NET/pngcrush/
http://jpegclub.org/jpegtran/
http://refresh-sf.com/yui
http://closure-compiler.appspot.com
http://before.azurewebsites.net/
http://after.azurewebsites.net/

index
Numerics

302 HTTP response code 161
304 HTTP status code 46, 118–119
404 HTTP status code 143–144

A

Accept header field 13
Accept-Encoding

field 13
headers 33–34

Accept-Language field 13
Akamai CDN 128
Amazon Cloudfront 128
ANTS performance profiler 146, 163
Any value, Location property 53
AppendHash() method 94–95, 97
apple-touch-icon.png 145
application cache

considerations for 92–93, 97–98
in MVC application 93–95
in Web Forms application 96–97
overview 91–92

appSettings section, Web.config file 131,
133

async attribute 84–85
asynchronous JavaScript, in HTML5 83–85
AutoID mode 156

B

bandwidth, reducing 126
Base64 encoded strings 104–105, 107–109, 111–

113
best practices 23–24

body, of HTTP messages 12
browser support

for HTML5 82–83
for Web Workers API 86–87

BundleConfig class 64, 66, 69–70
bundling files

ASP.NET 4.5 features for 63–66
in MVC application 66–68
in Web Forms application 68–72
overview 63
results of 72–74

business impact 5

C

cache
considerations for 50–51
disabling 167

when profiling 147
empty vs. primed 16–17
forcing refresh 17
in IIS 46–49
OutputCache attribute

in MVC application 51–54
in Web Forms application 54–55
overview 51

overview 43–46
results of 56
Web.config settings for 50

CACHE section, manifest file 92
Cache-Control

field 13
header 46

CacheFly 128
calculations, caching 175
Cascading Style Sheets. See CSS
185

INDEX186
CDN (Content Delivery Network)
Akami CDN 128
Amazon Cloudfront 128
comparison of 128
domain sharding 128–130
implementing in MVC application 130–132
implementing in Web Forms application 132–

134
overview 126–127
Rackspace 128
speed advantages of 134–135
Windows Azure 128

CdnUtils class 131, 133
Chrome. See Google Chrome
client error, status code for 15
Client IDs, and performance 156–157
Client value, Location property 53
ClientIDMode 156
Closure Compiler, Google 62
command line tools, for image optimization

Jpegtran 103
Pngcrush 103

compression
Accept-Encoding 33–34
adding to website

alternative techniques 40
using IIS 36–37
using Web.config file 38–39

file size and 31
importance of 30–31
overview 29–30
pros and cons of 32
types of

Deflate 33
Gzip 32–33
SDCH 33

viewing improvement 40–42
Connection field 13–14
Content Delivery Network. See CDN
Content-Encoding

field 14
header 30

CPU usage, compression and 32
CSS (Cascading Style Sheets)

compressing files 31
order of 79–81
position for 76–78

D

data caching
distributed caching 177–178
implementing in Surf Store application 175–

176
overview 172

System.Runtime.Caching namespace 172
which data to cache 175

data URIs
implementing in MVC application 106–109
implementing in Webforms application 109–

113
overview 104–106

databases
caching lookups 175
using MiniProfiler on 152–153

DataUriUtils class 106, 109
Date field 14
debug mode, vs. release mode 141–143
debug=false setting 159
debug=true setting 142, 159
Defer attribute 84
Deflate compression 33
dimensions of images, importance of

specifying 113–114
distributed caching 177–178
doDynamicCompression attribute 39
DOM (Document Object Model) 17
domain sharding 128–130
DOMContentLoaded event 17
doStaticCompression attribute 39
DotTrace tool 146, 163
downloading, Visual Studio 2012 35
Downstream value, Location property 53
duplicate scripts impact 81
dynamic content, caching of 36
dynamic manifest file 92
dynamicCompressionBeforeCache attribute 39
DynamicCompressionDisableCpuUsage

attribute 39
dynamicTypes element 38

E

EdgeCast 128
empty cache, vs. primed cache 16–17
environmental impact 6
ETags

overview 118–120
removing 121–122
speed advantages of removing 122–123

ETagUtils class 121
Expires

field 14
header 24, 45–47, 117, 120, 123

F

FALLBACK section, manifest file 92
favicon, and performance of MVC

applications 143–146

INDEX 187
Fiddler
overview 183
performance charts in 22

financial impact
business impact 5
environmental impact 6
mobile user impact 5–6
search engine ranking impact 5

Firebug
overview 183
performance charts in 21

Firefox, support for Data URI 105
first-time visitors 16
Flash, bytes per page 8

G

GET requests
overview 12–13
response from 13–14

GetProductDetailByCategory method 176
GIF format 101
Global.asax file 67, 69, 141, 149, 165
GoGrid CDN 128
Google Chrome

performance charts in 19–20
support for Data URI 105

Google Closure compiler 62, 183
Google PageSpeed 25, 40, 113–114, 135–136,

183
Gzip

compression 32–33
format 30–31

H

headers, of HTTP messages 12
HTML (HyperText Markup Language)

bytes per page 8
image tag 108, 112–113

HTML optimization
CSS position 76–78
HTML5

asynchronous JavaScript 83–85
browser support for 82–83
overview 81–82

HTML5 application cache
considerations for 92–93, 97–98
in MVC application 93–95
in Web Forms application 96–97
overview 91–92

HTML5 Web Workers API
browser support for 86–87
in MVC application 87–88
in Web Forms application 89–91

overview 85–86
impact of duplicate scripts 81
JavaScript position 78–79
order of external styles and scripts

79–81
HTML5

application cache
considerations for 92–93, 97–98
in MVC application 93–95
in Web Forms application 96–97
overview 91–92

asynchronous JavaScript 83–85
browser support for 82–83
overview 81–82
Web Workers API

browser support for 86–87
in MVC application 87–88
in Web Forms application 89–91
overview 85–86

HTTP (Hypertext Transfer Protocol)
caching 147, 167
GET requests 12–13
GET response 13–14
overview 11–12
requesting 160
response codes

302 status code 161
404 status code 143

response data 118
stateless protocol 160
status code 15, 118

HTTPWatch
overview 183
performance charts in 22

HyperText Markup Language. See HTML

I

id attribute, and performance 156–157
Identification step, Performance Cycle 123
If-None-Match field 118
IHTTPModule interface 121
IIS (Internet Information Services) 4

adding compression using 36–37
caching in 46–49
Express 181
setting up on local machine 181
throttling CUP usage using 32

image optimization
advantages of 114–115
command line tools

Jpegtran 103
Pngcrush 103

compression 31–32
importance of specifying dimensions 113–114

INDEX188
image optimization (continued)
online tools

Kraken 101–102
smush.it 101

overview 100
using data URIs

implementing in MVC application 106–109
implementing in Web Forms application 109
implementing in Webforms application ??–

113
overview 104–106

Visual Studio extension for 103–104
Image Optimizer extension 104
images, bytes per page 8
informational status code 15
Inherit value 156
Instagram 143
Internet Explorer

performance charts in 21
support for Data URI 105

Internet Information Services. See IIS

J

JavaScript
asynchronous, HTML5 83–85
compressing files 31
duplicate scripts impact 81
order of 79–81
position for 78–79

Jpegtran 103, 183
JPG/JPEG format 101
JustTrace. See Telerik JustTrace

K

Keep-Alive field 14
Kraken 101–102, 183

L

Last-Modified header 120
latency 5, 19
Layout Razor view 147
Load event 17–18
Location property 53
lossless optimization 101

M

Manage NuGet Packages option 163
manifest file 92
Master page 164
Memcached 177
MemoryCache class 173–174

MIME types 82
minFileSizeForComp attribute 39
minification

ASP.NET 4.5 features for 63–66
in MVC application 66–68
in Web Forms application 68–72
overview 59–63
results of 72–74

MiniProfiler 183
overview 146–152
using on databases 152–153

mobile user impact 5–6
Modernizr library 83
monitoring websites 8
MVC applications

application cache in 93–95
bundling files in 66–68
minification in 66–68
OutputCache attribute in 51–54
performance of

and favicon 143–146
and view engines 140–141
profiling code 146–152
release mode vs. debug mode 141–143
using MiniProfiler on databases 152–153

Web Workers API in 87–88

N

naming, profiling blocks 151
NCache 177
Net tab, Firebug 21
NETWORK section, manifest file 92
None value, Location property 53
NuGet package 147–148, 163

O

online tools, for image optimization
Kraken 101–102
smush.it 101

Opera, support for Data URI 105
optimizing websites

identifying areas of improvement 7
implementing 7
monitoring 8
profiling website 7
where to optimize 8–9

original.png folder 103
OutputCache attribute

in MVC application 51–54
in Web Forms application 54–55
overview 51

INDEX 189
P

PageSpeed tool 113–114
parallel, downloading in 128
PDFs, compressing 32
performance

ASP.NET projects not optimized for 169
locating root cause of issue 168
of MVC applications

and favicon 143–146
and view engines 140–141
profiling code 146–152
release mode vs. debug mode 141–143
using MiniProfiler on databases 152–153

of Web Forms applications
Client IDs 156–157
disabling session state 160
disabling tracing 159
disabling view state 160–161
profiling code 162–167
Response.Redirect vs. Server.Transfer 161
Server.Transfer vs. Response.Redirect ??–162
using release mode 158–159
Web.config settings 158–161

performance charts
Fiddler 22
Firebug 21
Google Chrome developer tools 19–20
HTTPWatch 22
Internet Explorer developer tools 21
overview 17–19
Safari Web Inspector 21
WebPageTest.org 22

performance cycle 3, 6–8, 83, 123, 168
Performance Golden Rule 4, 9, 23–24
PNG format 101
Pngcrush 103, 183
position

for CSS 76–78
for JavaScript 78–79

postMessage method 88, 90
PostReleaseRequestState 121
Predictable mode 156
primed cache, vs. empty cache 16–17
Product.aspx page 166
Products page 150, 165
profiling code

and performance 162–167
overview 146–152
using MiniProfiler on databases 152–153
website 7

pros and cons, of compression 32
PunyPNG tool 104

R

Rackspace CDN 128
Razor view engine 140–141
redirection, status code for 15
Redis 177
references 181–183
refreshing pages 17
RegisterBundles() method 64
release mode

performance improvements using 158–159
vs. debug mode 141–143

removing ETags 121–122
repeat visitors 16
Request.IsLocal 150
Response.Redirect method, vs. Server.Transfer

method 161–162
result.png folder 103
results

of bundling files 72–74
of caching 56
of minification 72–74

Retrieve Products profiling block 152, 167
RouteConfig.cs file 145

S

Safari
performance charts in 21
support for Data URI 105

scripts, bytes per page 8
SDCH (Shared Dictionary Compression over

HTTP) 33
SEO (search engine optimization) 5
server error, status code for 15
Server value, Location property 53
Server.Transfer method 161–162
ServerAndClient value, Location property 53
session state, disabling 160
Shared Dictionary Compression over HTTP. See

SDCH
smush.it 101, 183
Souders, Steve 4, 9, 120
speed improvements

financial impact
business impact 5
environmental impact 6
mobile user impact 6
search engine ranking impact 5

implementing all suggestions 178–179
importance of 4, 9
of using CDNs 134–135
optimizing

identifying areas of improvement 7
implementing 7

INDEX190
speed improvements (continued)
monitoring 8
profiling website 7
where to optimize 8–9

Performance Golden Rule 9
removing ETags 122–123

stateless protocol 160
static content, compression of 35
Static mode 156
staticTypes element 38
status codes, HTTP 15
stylesheets, bytes per page 8
success, status code for 15
Surf Store application 106, 109–110, 113–114

implementing data caching in 175–176
overview 34–35

SurfStoreApp project 131, 133, 151, 167, 173
System.Runtime.Caching namespace 172
System.Web.Optimization namespace 63

T

Telerik JustTrace 146, 163
tracing, disabling 159
transfer-encoding 14
Twitter Bootstrap framework 31
type attribute 82

U

urlCompression element 39
User-Agent field 13
using statement 150, 165
Utils folder 106

V

Vary
field 14
header 34

VaryByParam property 52
verb, of HTTP request 12
view engines, performance of MVC

applications 140–141
view state, disabling 160–161
visitors

first-time 16
repeat 16

Visual Studio
debugging in 141
downloading 35
extension for image optimization 103–104

W

waterfall charts
interpreting 17–19
producing 19

Web Forms applications
application cache in 96–97
bundling files in 68–72
minification in 68–72
OutputCache attribute in 54–55
performance of

Client IDs 156–157
disabling session state 160
disabling tracing 159
disabling view state 160–161
profiling code 162–167
Server.Transfer vs. Response.Redirect 161–

162
using release mode 158–159
Web.config settings 158–161

Web Workers API in 89–91
Web Forms view engine 140–141
Web Workers API

browser support for 86–87
in MVC application 87–88
in Web Forms application 89–91
overview 85–86

Web.config file 122, 142
adding compression using 38–39
caching using 50
performance improvements with 158–161

web-farm environment
and distributed caching 177
and ETags 120

WebPageTest 22, 183
webpagetest.org tool 126
Windows Azure Caching 177
Windows Azure CDN 128

X

XML files 175

Y

Yahoo! YSlow tool 24–25, 41, 114, 120, 122–123,
130

Yahoo! YUI compressor 62

Z

zip compression 32

Dean Alan Hume

T
here’s a real cost to ineffi cient HTTP requests, overloaded
data streams, and bulky scripts. Server throughput is a
precious commodity, and seconds—even tiny fractions of

a second—can seem like an eternity while a visitor waits for
your site to load. As an ASP.NET developer, there are dozens of
techniques you can apply immediately to make your sites and
applications faster. You’ll fi nd them here.

Fast ASP.NET Websites delivers just what it promises—practical,
hands-on guidance to create faster, more effi cient ASP.NET sites
and applications. Th is book off ers step-by-step .NET-specifi c
examples showing you how to apply classic page optimization
tips, ASP.NET-specifi c techniques, and ways to leverage new
HTML5 features.

What’s Inside
● Drastically improved response times
● Tips for Webforms and ASP.NET MVC sites
● Optimizing existing pages
● .NET-specifi c examples

Readers should be familiar with basic HTML, CSS, and ASP.NET
concepts.

Dean Hume is a soft ware developer and blogger based in the U.K.
A passionate techie, he created the ASP.NET HTML5 toolkit and
blogs regularly about web performance at www.deanhume.com.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/FastASP.NETWebsites

$34.99 / Can $36.99 [INCLUDING eBOOK]

FAST ASP.NET WEBSITES

ASP.NET/WEB DEVELOPMENT

M A N N I N G

“A clear and eff ective guide
to the art of ASP.NET

 performance tuning.”—Bryn Keller, Jenkon

“Comprehensive,
reader-friendly information

on how to make your
 ASP.NET website fl y.”—Danylo Kizyma

Advanced Utility Systems

“Demonstrates key
 concepts in clear detail.”—Michael Roberts, Sr.

Information Innovators

“An up-to-date guide ...
focuses on client performance

and user experience.”
—Onofrio Panzarino
SBG Wolters Kluwe

SEE INSERT

	Front cover
	contents
	preface
	acknowledgments
	about this book
	How to use this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Software requirements
	Author Online
	About the cover illustration

	Part 1—Defining performance
	1 High-speed websites
	1.1 Why optimize?
	1.2 The financial impact
	1.2.1 The business impact
	1.2.2 The search engine ranking impact
	1.2.3 The mobile user impact
	1.2.4 The environmental impact

	1.3 How to optimize
	1.3.1 Profile
	1.3.2 Identify
	1.3.3 Implement
	1.3.4 Monitor

	1.4 Where to optimize
	1.5 The Performance Golden Rule
	1.6 Summary

	2 First steps toward a faster website
	2.1 The basics of HTTP
	2.1.1 Understanding an HTTP GET request
	2.1.2 Understanding an HTTP GET response
	2.1.3 Understanding HTTP status codes

	2.2 Empty cache vs. primed cache
	2.3 Tips and tools for interpreting performance charts
	2.3.1 What does it all mean?
	2.3.2 Google Chrome developer tools
	2.3.3 Internet Explorer developer tools
	2.3.4 Firebug
	2.3.5 Safari Web Inspector
	2.3.6 HTTPWatch
	2.3.7 WebPagetest
	2.3.8 Fiddler

	2.4 Performance rules to live by
	2.4.1 Yahoo! YSlow
	2.4.2 Google PageSpeed

	2.5 Summary

	Part 2—General performance best practices
	3 Compression
	3.1 What is compression?
	3.2 Why should I use compression?
	3.3 Pros and cons of compression
	3.4 Types of compression
	3.4.1 Gzip
	3.4.2 Deflate
	3.4.3 SDCH

	3.5 Accept-Encoding
	3.6 The Surf Store application
	3.7 Adding compression to your website
	3.7.1 Using IIS to add compression to a website
	3.7.2 Using a Web.config file to add compression to a website
	3.7.3 Adding compression with other techniques

	3.8 The results
	3.9 Summary

	4 Caching: The sell-by date
	4.1 What is HTTP caching?
	4.2 IIS and HTTP caching
	4.3 Web.config settings
	4.4 Caching considerations
	4.5 Output caching
	4.5.1 Output caching in an ASP.NET MVC application
	4.5.2 Output caching in an ASP .NET Web Forms application

	4.6 The results of HTTP caching
	4.7 Summary

	5 Minifying and bundling static files
	5.1 What is minification?
	5.2 What is bundling?
	5.3 New bundling and minifying features in ASP.NET 4.5
	5.4 Utilizing bundling in ASP.NET MVC
	5.5 Utilizing bundling in ASP.NET Web Forms
	5.6 The results
	5.7 Summary

	6 HTML optimization tips
	6.1 Where to position CSS and JavaScript in a web page to achieve the best performance
	6.1.1 CSS
	6.1.2 JavaScript

	6.2 How the order of styles and scripts affects rendering
	6.2.1 The impact of duplicate scripts

	6.3 HTML5
	6.4 A note on HTML5 browser support
	6.4.1 HTML5 asynchronous JavaScript
	6.4.2 HTML5 Web Workers
	6.4.3 Browser support for HTML5 Web Workers
	6.4.4 HTML5 Web Workers in an ASP.NET MVC application
	6.4.5 Web Workers in an ASP.NET Web Forms application

	6.5 HTML5 application cache
	6.5.1 HTML5 application cache considerations
	6.5.2 HTML5 application cache in an ASP.NET MVC application
	6.5.3 HTML5 application cache in an ASP.NET Web Forms application
	6.5.4 Application cache support

	6.6 Summary

	7 Image optimization
	7.1 What’s the big deal with image optimization?
	7.2 Online image optimization tools
	7.2.1 Smush.it
	7.2.2 Kraken

	7.3 Command line image optimization tools
	7.3.1 Pngcrush
	7.3.2 Jpegtran

	7.4 Image Optimizer—a Visual Studio extension
	7.5 Using data URIs
	7.5.1 Implementing data URIs in an ASP.NET MVC application
	7.5.2 Implementing data URIs in an ASP.NET Web Forms application

	7.6 The importance of specifying image dimensions
	7.7 The results
	7.8 Summary

	8 ETags
	8.1 What are ETags?
	8.2 Why should I change ETags?
	8.3 Removing ETags in ASP.NET Web Forms and ASP.NET MVC applications
	8.4 The results
	8.5 Summary

	9 Content Delivery Networks
	9.1 What is a Content Delivery Network?
	9.2 CDN options
	9.3 Domain sharding
	9.4 Developing with a CDN
	9.4.1 ASP.NET MVC HTML helper for CDN development
	9.4.2 ASP.NET Web Forms helper for CDN development

	9.5 The results
	9.6 Summary

	Part 3—ASP.NET– specific techniques
	10 Tweaking ASP.NET MVC performance
	10.1 Using only the view engines that you need
	10.2 Release mode vs. Debug mode
	10.3 The importance of a favicon
	10.4 Utilizing a code profiler
	10.4.1 MiniProfiler for database profiling

	10.5 Summary

	11 Tweaking ASP.NET Web Forms performance
	11.1 HTML improvements
	11.2 Web.config settings
	11.2.1 Publishing your application in Release mode
	11.2.2 Disable tracing if it’s not used
	11.2.3 Disable session state
	11.2.4 Disable ViewState when it’s not needed

	11.3 Response.Redirect vs. Server.Transfer
	11.4 Utilizing a code profiler
	11.5 Fixing the issue
	11.6 Summary

	12 Data caching
	12.1 Server-side data caching
	12.2 System.Runtime.Caching
	12.3 What should I cache?
	12.4 The sample application
	12.5 Notes on distributed caching
	12.6 Summary
	12.7 Look at how far you’ve come!

	appendix
	A.1 Setting up your local machine as a web development server with IIS
	A.2 Useful links referenced in this book

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Back cover

